1 |
Rossiter B E, Swingle N M. Asymmetric conjugate addition[J]. Chemical Reviews, 1992, 92(5): 771-806.
|
2 |
Christoffers J, Koripelly G, Rosiak A, et al. Recent advances in metal-catalyzed asymmetric conjugate additions[J]. Synthesis, 2007, 2007(9): 1279-1300.
|
3 |
Rosati F, Roelfes G. Artificial metalloenzymes[J]. ChemCatChem, 2010, 2(8): 916-927.
|
4 |
Gennari C, Piarulli U. Combinatorial libraries of chiral ligands for enantioselective catalysis[J]. Chemical Reviews, 2003, 103(8): 3071-3100.
|
5 |
Schwizer F, Okamoto Y, Heinisch T, et al. Artificial metalloenzymes: reaction scope and optimization strategies[J]. Chemical Reviews, 2018, 118(1): 142-231.
|
6 |
Davis H J, Ward T R. Artificial metalloenzymes: challenges and opportunities[J]. ACS Central Science, 2019, 5(7): 1120-1136.
|
7 |
Steinreiber J, Ward T R. Artificial metalloenzymes as selective catalysts in aqueous media[J]. Coordination Chemistry Reviews, 2008, 252(5/6/7): 751-766.
|
8 |
Letondor C, Humbert N, Ward T R. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4683-4687.
|
9 |
Letondor C, Pordea A, Humbert N, et al. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein[J]. Journal of the American Chemical Society, 2006, 128(25): 8320-8328.
|
10 |
Ward T R. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond[J]. Accounts of Chemical Research, 2011, 44(1): 47-57.
|
11 |
Pordea A, Creus M, Letondor C, et al. Improving the enantioselectivity of artificial transfer hydrogenases based on the biotin-streptavidin technology by combinations of point mutations[J]. Inorganica Chimica Acta, 2010, 363(3): 601-604.
|
12 |
Roelfes G. DNA and RNA induced enantioselectivity in chemical synthesis[J]. Molecular BioSystems, 2007, 3(2): 126-135.
|
13 |
Coquière D, Bos J, Beld J, et al. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold [J]. Angewandte Chemie International Edition, 2009, 48(28): 5159-5162.
|
14 |
Coquière D, Feringa B L, Roelfes G. DNA-based catalytic enantioselective michael reactions in water[J]. Angewandte Chemie International Edition, 2007, 46(48): 9308-9311.
|
15 |
Bos J, García-Herraiz A, Roelfes G. An enantioselective artificial metallo-hydratase[J]. Chemical Science, 2013, 4(9): 3578-3582.
|
16 |
Sreenilayam G, Moore E J, Steck V, et al. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor[J]. ACS Catalysis, 2017, 7(11): 7629-7633.
|
17 |
Wang W J, Tachibana R, Zou Z, et al. Manganese transfer hydrogenases based on the biotin-streptavidin technology[J]. Angewandte Chemie International Edition, 2023, 62(43): e202311896.
|
18 |
Aplander K, Ding R, Krasavin M, et al. Asymmetric lewis acid catalysis in water: α-amino acids as effective ligands in aqueous biphasic catalytic Michael additions[J]. European Journal of Organic Chemistry, 2009, 2009(6): 810-821.
|
19 |
Dey S, Jäschke A. Tuning the stereoselectivity of a DNA-catalyzed Michael addition through covalent modification[J]. Angewandte Chemie International Edition, 2015, 54(38): 11279-11282.
|
20 |
Dong X C, Yuan Z J, Qu Y, et al. An ATP-Cu(Ⅱ) catalyst efficiently catalyzes enantioselective Michael reactions in water[J]. Green Chemistry, 2021, 23(24): 9876-9880.
|
21 |
Okrasa K, Kazlauskas R J. Manganese-substituted carbonic anhydrase as a new peroxidase[J]. Chemistry, 2006, 12(6): 1587-1596.
|
22 |
Fernández-Gacio A, Codina A, Fastrez J, et al. Transforming carbonic anhydrase into epoxide synthase by metal exchange[J]. Chembiochem, 2006, 7(7): 1013-1016.
|
23 |
Jing Q, Okrasa K, Kazlauskas R J. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase: a new reductase[J]. Chemistry, 2009, 15(6): 1370-1376.
|
24 |
Markel U, Sauer D F, Schiffels J, et al. Towards the evolution of artificial metalloenzymes—a protein engineer’s perspective[J]. Angewandte Chemie International Edition, 2019, 58(14): 4454-4464.
|
25 |
Lewis J C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis[J]. Accounts of Chemical Research, 2019, 52(3): 576-584.
|
26 |
Lesley S A, Kuhn P, Godzik A, et al. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11664-11669.
|
27 |
Silvennoinen L, Sandalova T, Schneider G. The polyketide cyclase RemF from Streptomyces resistomycificus contains an unusual octahedral zinc binding site[J]. FEBS Letters, 2009, 583(17): 2917-2921.
|
28 |
Roelfes G. LmrR: a privileged scaffold for artificial metalloenzymes[J]. Accounts of Chemical Research, 2019, 52(3): 545-556.
|
29 |
Matsumoto R, Yoshioka S, Yuasa M, et al. An artificial metallolyase with pliable 2-His-1-carboxylate facial triad for stereoselective Michael addition[J]. Chemical Science, 2023, 14(14): 3932-3937.
|
30 |
Fujieda N, Ichihashi H, Yuasa M, et al. Cupin variants as a macromolecular ligand library for stereoselective Michael addition of nitroalkanes[J]. Angewandte Chemie (International Ed. in English), 2020, 59(20): 7717-7720.
|
31 |
Fujieda N, Nakano T, Taniguchi Y, et al. A well-defined osmium-cupin complex: hyperstable artificial osmium peroxygenase[J]. Journal of the American Chemical Society, 2017, 139(14): 5149-5155.
|
32 |
Jaroszewski L, Schwarzenbacher R, von Delft F, et al. Crystal structure of a novel manganese-containing cupin (TM1459) from Thermotoga maritima at 1.65 Å resolution[J]. Proteins, 2004, 56(3): 611-614.
|
33 |
Woo E J, Dunwell J M, Goodenough P W, et al. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities[J]. Nature Structural Biology, 2000, 7(11): 1036-1040.
|
34 |
Amrein B, Schmid M, Collet G, et al. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals[J]. Metallomics: Integrated Biometal Science, 2012, 4(4): 379-388.
|
35 |
Bruijnincx P C A, van Koten G, Klein Gebbink R J M. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies[J]. Chemical Society Reviews, 2008, 37(12): 2716-2744.
|
36 |
Koehntop K D, Emerson J P, Que L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(Ⅱ) enzymes[J]. Journal of Biological Inorganic Chemistry, 2005, 10(2): 87-93.
|
37 |
Parkin G. Synthetic analogues relevant to the structure and function of zinc enzymes[J]. Chemical Reviews, 2004, 104(2): 699-767.
|
38 |
Podtetenieff J, Taglieber A, Bill E, et al. An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein[J]. Angewandte Chemie International Edition, 2010, 49(30): 5151-5155.
|
39 |
Fink M, Trunk S, Hall M, et al. Engineering of TM1459 from Thermotoga maritima for increased oxidative alkene cleavage activity[J]. Frontiers in Microbiology, 2016, 7: 1511.
|
40 |
Grill B, Pavkov-Keller T, Grininger C, et al. Engineering TM1459 for stabilisation against inactivation by amino acid oxidation[J]. Chemie Ingenieur Technik, 2023, 95(4): 596-606.
|
41 |
Otto S, Bertoncin F, Engberts J. Lewis acid catalysis of a Diels-Alder reaction in water[J]. Journal of the American Chemical Society, 1996, 118: 7702-7707.
|
42 |
Grimm A R, Sauer D F, Davari M D, et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis[J]. ACS Catalysis, 2018, 8(4): 3358-3364.
|
43 |
Reetz M T, Rentzsch M, Pletsch A, et al. A robust protein host for anchoring chelating ligands and organocatalysts[J]. Chembiochem, 2008, 9(4): 552-564.
|