CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3163-3175.DOI: 10.11949/0438-1157.20240178
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jiaying ZHANG1,2(), Cong WANG1, Yajun WANG1(
)
Received:
2024-02-18
Revised:
2024-03-13
Online:
2024-10-10
Published:
2024-09-25
Contact:
Yajun WANG
通讯作者:
王雅君
作者简介:
张佳颖(1998—),女,硕士研究生,zhangjyjia@163.com
基金资助:
CLC Number:
Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline[J]. CIESC Journal, 2024, 75(9): 3163-3175.
张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175.
Fig.1 XRD patterns of CNT-Co (a), BiPO4, Bi2O3, 15%CNT-Co/BiPO4 and 19%CNT-Co/BiPO4+Bi2O3 (b), BiPO4, Bi2O3, 60%CNT-Co/Bi2O3, 70%CNT-Co/Bi2O3 and 80%CNT-Co/Bi2O3 (c); FTIR spectra of CNT-Co, BiPO4, 15%CNT-Co/BiPO4 and 70%CNT-Co/Bi2O3 (d)
Fig.4 EPR spectra of BiPO4 and 70%CNT-Co/Bi2O3(a); UV-Vis DRS spectra of CNT-Co, BiPO4, Bi2O3, 15%CNT-Co/BiPO4, 19%CNT-Co/BiPO4+Bi2O3, 60%CNT-Co/Bi2O3, 70%CNT-Co/Bi2O3 and 80%CNT-Co/Bi2O3(b); N2 adsorption-desorption isotherms of CNT-Co, BiPO4 and 70%CNT-Co/Bi2O3(c)
Fig.6 The degradation curve (a) and degradation rate (b) of TC in different reaction systems under ultraviolet light irradiation (λ=254 nm); The degradation curve (c) and degradation rate (d) of TC in different reaction systems under visible light irradiation (λ≥420 nm)
Fig.10 Active species capture experiment of 70%CNT-Co/Bi2O3(a) and degradation rate(b); EPR spectra of DMPO-·OH, ·SO4- and ·O2- (c), TEMP-1O2 adducts (d) of 70%CNT-Co/Bi2O3 system
1 | Li J C, Zhao L, Zhang R C, et al. Transformation of tetracycline antibiotics with goethite: mechanism, kinetic modeling and toxicity evaluation[J]. Water Research, 2021, 199: 117196. |
2 | Kumar Ray S, Dhakal D, Gyawali G, et al. Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated α-NiMoO4 nanorods: mechanism and pathways[J]. Chemical Engineering Journal, 2019, 373: 259-274. |
3 | Zuo J X, Wang B Y, Kang J, et al. Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: efficiency, mechanism and degradation pathways[J]. Separation and Purification Technology, 2022, 297: 121459. |
4 | Peng X M, Wu J Q, Zhao Z L, et al. Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245. |
5 | Wang X Y, Ma Y H, Jiang J J, et al. Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride[J]. Journal of Hazardous Materials, 2022, 434: 128864. |
6 | Tang S F, Wang Z T, Deling, et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate[J]. International Journal of Electrochemical Science, 2020, 15(3): 2470-2480. |
7 | Zhang H X, Xie C H, Chen L, et al. Different reaction mechanisms of SO4•- and •OH with organic compound interpreted at molecular orbital level in Co(Ⅱ)/peroxymonosulfate catalytic activation system[J]. Water Research, 2023, 229: 119392. |
8 | Jiang J, Luan X, Chen M, et al. Facile synthesis and photocatalytic activity of Bi2O3/BiVO4 nanocomposites[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9: 464-467. |
9 | Kim D, Jung D. Enhancement of photocatalytic activity over Bi2O3/black-BiOCl heterojunction[J]. Chemical Physics Letters, 2017, 674: 130-135. |
10 | Dai J F, Chen X F, Yang H. Visible light photocatalytic degradation of dyes by a new polyaniline/β-Bi2O3 composite[J]. Inorganic and Nano-Metal Chemistry, 2017, 47(9): 1364-1368. |
11 | Sun Q, Zhao Y J, Zhang J, et al. Efficient degradation of antibiotics over Co(Ⅱ)-doped Bi2MoO6 nanohybrid via the synergy of peroxymonosulfate activation and photocatalytic reaction under visible irradiation[J]. Chemosphere, 2022, 302: 134807. |
12 | Dai H W, Zhou W J, Wang W, et al. Unveiling the role of cobalt species in the Co/N-C catalysts-induced peroxymonosulfate activation process[J]. Journal of Hazardous Materials, 2022, 426: 127784. |
13 | Wang Y, Zhao S, Fan W C, et al. The synthesis of novel Co-Al2O3 nanofibrous membranes with efficient activation of peroxymonosulfate for bisphenol A degradation[J]. Environmental Science: Nano, 2018, 5(8): 1933-1942. |
14 | Zhao Y J, Dang P, Gao Y Q, et al. Double Z-scheme Co3O4/Bi4O7/Bi2O3 composite activated peroxymonosulfate to efficiently degrade tetracycline under visible light[J]. Environmental Science and Pollution Research International, 2022, 29(52): 79184-79198. |
15 | Lin X, Nie Z Z, Zhang L Y, et al. Nitrogen-doped carbon nanotubes encapsulate cobalt nanoparticles as efficient catalysts for aerobic and solvent-free selective oxidation of hydrocarbons[J]. Green Chemistry, 2017, 19(9): 2164-2173. |
16 | Wang Y J, Qiang Z S, Zhu W, et al. BiPO4 nanorod/graphene composite heterojunctions for photocatalytic degradation of tetracycline hydrochloride[J]. ACS Applied Nano Materials, 2021, 4(9): 8680-8689. |
17 | Li B, Xu H Y, Liu Y L, et al. Fabricating an oxygen-vacancy-rich urchin-like Co3O4 nanocatalyst to boost peroxymonosulfate activation to degrade high-concentration crystal violet[J]. Ceramics International, 2022, 48(18): 26553-26564. |
18 | Zhu Y Y, Ling Q, Liu Y F, et al. Photocatalytic performance of BiPO4 nanorods adjusted via defects[J]. Applied Catalysis B: Environmental, 2016, 187: 204-211. |
19 | Dong S Y, Cui L F, Liu C Y, et al. Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: a promising photocatalysts for water purification[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 288-296. |
20 | Qian Y, Jiang S, Li Y, et al. In situ revealing the electroactivity of P—O and P—C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901676. |
21 | Wang L L, Tang G G, Liu S, et al. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 428: 131338. |
22 | Wang D B, Yu X, Feng Q G, et al. In-situ growth of β-Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds, 2021, 859: 157795. |
23 | Lv Y H, Zhu Y Y, Zhu Y F. Enhanced photocatalytic performance for the BiPO4- x nanorod induced by surface oxygen vacancy[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18520-18528. |
24 | Yin Z L, Zhang X X, Yuan X H, et al. Constructing TiO2@Bi2O3 multi-heterojunction hollow structure for enhanced visible-light photocatalytic performance[J]. Journal of Cleaner Production, 2022, 375: 134112. |
25 | Li D G, Zhang G Z, Li W J, et al. Magnetic nitrogen-doped carbon nanotubes as activators of peroxymonosulfate and their application in non-radical degradation of sulfonamide antibiotics[J]. Journal of Cleaner Production, 2022, 380: 135064. |
26 | Cheng X X, Zhang Y R, Fan Q S, et al. Preparation of Co3O4@carbon nanotubes modified ceramic membrane for simultaneous catalytic oxidation and filtration of secondary effluent[J]. Chemical Engineering Journal, 2023, 454: 140450. |
27 | Liu C H, Dai H L, Tan C Q, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326. |
28 | Ma R, Chen Z J, Xu W H, et al. Fe-MOFs/CuS nanocomposite-mediated peroxymonosulfate activation for tetracycline degradation: boosted dual redox cycles[J]. Journal of Cleaner Production, 2024, 442: 140885. |
29 | Su R, Wang Z Y, Xiao F, et al. In-situ fabrication of MOF-derived MnO-C modified graphite felt for electro-activation of peroxymonosulfate toward degradation of tetracycline: performance, mechanism and degradation pathway[J]. Separation and Purification Technology, 2024, 342: 126766. |
30 | Guo Y C, Zhao L D, Fang J, et al. Tetracycline degradation by activated persulfate with enhancement of ZIF-67 loaded wood-microreactor[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 111901. |
31 | An B Y, Liu J L, Zhu B J, et al. Returnable MoS2@carbon nitride nanotube composite hollow spheres drive photo-self-Fenton-PMS system for synergistic catalytic and photocatalytic tetracycline degradation[J]. Chemical Engineering Journal, 2023, 478: 147344. |
32 | Xu X S, Shao W F, Tai G Y, et al. Single-atomic Co-N site modulated exciton dissociation and charge transfer on covalent organic frameworks for efficient antibiotics degradation via peroxymonosulfate activation[J]. Separation and Purification Technology, 2024, 333: 125890. |
33 | Song J J, Yuan X Y, Sun M K, et al. Oxidation of tetracycline hydrochloride with a photoenhanced MIL-101(Fe)/g-C3N4/PMS system: synergetic effects and radical/nonradical pathways[J]. Ecotoxicology and Environmental Safety, 2023, 251: 114524. |
34 | Tang C S, Cheng M, Lai C, et al. Multiple path-dominated activation of peroxymonosulfate by MOF-derived Fe2O3/Mn3O4 for catalytic degradation of tetracycline[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110395. |
35 | Wang Q R, Xiao P F. Self-synthesized heterogeneous CuFe2O4-MoS2@BC composite as an activator of peroxymonosulfate for the oxidative degradation of tetracycline[J]. Separation and Purification Technology, 2023, 305: 122550. |
36 | Chen Q, Ning S Y, Yang J R, et al. In situ interfacial engineering of CeO2/Bi2WO6 heterojunction with improved photodegradation of tetracycline and organic dyes: mechanism insight and toxicity assessment[J]. Small, 2024, 20(18): e2307304. |
37 | Wang Z X, Han Y F, Fan W L, et al. Shell-core MnO2/carbon@carbon nanotubes synthesized by a facile one-pot method for peroxymonosulfate oxidation of tetracycline[J]. Separation and Purification Technology, 2021, 278: 119558. |
38 | Alnaggar G, Hezam A, Drmosh Q A, et al. Sunlight-driven activation of peroxymonosulfate by microwave synthesized ternary MoO3/Bi2O3/g-C3N4 heterostructures for boosting tetracycline hydrochloride degradation[J]. Chemosphere, 2021, 272: 129807. |
39 | Li D, Li H M, Long M Y, et al. Synergetic effect of photocatalysis and peroxymonosulfate activation by MIL-53Fe@TiO2 on efficient degradation of tetracycline hydrochloride under visible light irradiation[J]. CrystEngComm, 2022, 24(23): 4283-4293. |
40 | Li S, Yang Y L, Zheng H S, et al. Introduction of oxygen vacancy to manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation[J]. Water Research, 2022, 225: 119176. |
41 | Deng Y C, Li L, Zeng H, et al. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light[J]. Chemical Engineering Journal, 2023, 457: 141261. |
42 | Wei K X, Armutlulu A, Wang Y X, et al. Visible-light-driven removal of atrazine by durable hollow core-shell TiO2@LaFeO3 heterojunction coupling with peroxymonosulfate via enhanced electron-transfer[J]. Applied Catalysis B: Environmental, 2022, 303: 120889. |
43 | Ming H B, Wei D L, Yang Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. |
44 | Mertah O, Gómez-Avilés A, Kherbeche A, et al. Peroxymonosulfate enhanced photodegradation of sulfamethoxazole with TiO2@CuCo2O4 catalysts under simulated solar light[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108438. |
45 | Ruiz-Castillo A L, Hinojosa-Reyes M, Camposeco-Solis R, et al. Photocatalytic activity of Bi2O3/BiOCl heterojunctions under UV and visible light illumination for degradation of caffeine[J]. Topics in Catalysis, 2022, 65(9): 1071-1087. |
46 | Liu W, Zhou J B, Zhou Y, et al. Peroxymonosulfate-assisted g-C3N4@Bi2MoO6 photocatalytic system for degradation of nimesulide through phenyl ether bond cleavage under visible light irradiation[J]. Separation and Purification Technology, 2021, 264: 118288. |
[1] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[2] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[3] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[4] | Dengxue XING, Liang ZHANG, Wenqiang LI, Jianhua LIANG, Lei QIN, Genlin ZHANG, Chun LI. Synthesis of 18α-glycyrrhizic acid by yeast cells [J]. CIESC Journal, 2024, 75(9): 3266-3276. |
[5] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[6] | Mengyao KOU, Fangfei ZHENG, Wen XU, Na GUO, Bing LIAO. Determination of tetracycline degradation by alkali-catalyzed hydrogen peroxide system: law of action and mechanism analysis [J]. CIESC Journal, 2024, 75(6): 2362-2374. |
[7] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[8] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[9] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[10] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
[11] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[12] | Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed [J]. CIESC Journal, 2024, 75(4): 1414-1428. |
[13] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[14] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[15] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||