CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3610-3622.DOI: 10.11949/0438-1157.20240406
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Hongyu LI(), Xiangkun LIU, Yao SHI, Yueqiang CAO, Gang QIAN(
), Xuezhi DUAN
Received:
2024-04-12
Revised:
2024-06-07
Online:
2024-11-04
Published:
2024-10-25
Contact:
Gang QIAN
李泓宇(), 刘祥坤, 施尧, 曹约强, 钱刚(
), 段学志
通讯作者:
钱刚
作者简介:
李泓宇(1998—),男,硕士研究生,18795907997@163.com
基金资助:
CLC Number:
Hongyu LI, Xiangkun LIU, Yao SHI, Yueqiang CAO, Gang QIAN, Xuezhi DUAN. Numerical simulation of particle-resolved fixed-bed reactor for selective acetylene hydrogenation process[J]. CIESC Journal, 2024, 75(10): 3610-3622.
李泓宇, 刘祥坤, 施尧, 曹约强, 钱刚, 段学志. 颗粒分辨的乙炔选择性加氢固定床反应器数值模拟[J]. 化工学报, 2024, 75(10): 3610-3622.
分子 | 扩散体积 |
---|---|
C2H2 | 36.42 |
H2 | 6.12 |
C2H4 | 41.01 |
C2H6 | 45.66 |
C3H8 | 65.34 |
C4H8 | 82.08 |
Ar | 16.10 |
Table 1 Diffusion volumes used in simulation[35]
分子 | 扩散体积 |
---|---|
C2H2 | 36.42 |
H2 | 6.12 |
C2H4 | 41.01 |
C2H6 | 45.66 |
C3H8 | 65.34 |
C4H8 | 82.08 |
Ar | 16.10 |
物性 | 经验公式 | 文献 |
---|---|---|
催化剂粉末热导率 | [ | |
气体混合物热导率 | [ | |
物质i和物质j的二元黏度 | [ | |
气体混合物比热容 | [ | |
气体混合物密度 | [ | |
气体混合物平均摩尔质量 | [ | |
反应热 | [ |
Table 2 Empirical equations used in simulation
物性 | 经验公式 | 文献 |
---|---|---|
催化剂粉末热导率 | [ | |
气体混合物热导率 | [ | |
物质i和物质j的二元黏度 | [ | |
气体混合物比热容 | [ | |
气体混合物密度 | [ | |
气体混合物平均摩尔质量 | [ | |
反应热 | [ |
位置 | 动量方程 | 质量方程 | 能量方程 |
---|---|---|---|
反应器入口 ( | |||
反应器出口 ( | |||
反应器管壁( | |||
颗粒与流体交界面 | — |
Table 3 Boundary conditions for solving Eqs.(12)—(14), Eq.(16) and Eq.(17)
位置 | 动量方程 | 质量方程 | 能量方程 |
---|---|---|---|
反应器入口 ( | |||
反应器出口 ( | |||
反应器管壁( | |||
颗粒与流体交界面 | — |
Fig.7 Central longitudinal temperature distribution, temperature along axial direction, central longitudinal C2H2 concentration distribution, C2H2 concentration along axial direction and C2H2 conversion and C2H4 selectivity with respect to pressure
Fig.8 Central longitudinal temperature distribution, temperature along axial direction, central longitudinal C2H2 concentration distribution, C2H2 concentration along axial direction and C2H2 conversion and C2H4 selectivity with respect to GHSV
Fig.9 Central longitudinal temperature distribution, temperature along axial direction, central longitudinal C2H2 concentration distribution, C2H2 concentration along axial direction and C2H2 conversion and C2H4 selectivity with respect to inlet temperature
Fig.10 Central longitudinal temperature distribution, temperature along axial direction, central longitudinal C2H2 concentration distribution, C2H2 concentration along axial direction and C2H2 conversion and C2H4 selectivity with respect to hydrogen-acetylene ratio
1 | Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction[J]. Catalysis Reviews, 2006, 48(2): 91-144. |
2 | Dehghani O, Rahimpour M R, Shariati A. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay[J]. Processes, 2019, 7(3): 136. |
3 | 张谦温, 刘新香, 朱起明. 炔烃和二烯烃选择加氢现状与发展[J]. 石油化工, 1998, 27(1): 53-58. |
Zhang Q W, Liu X X, Zhu Q M. Present situation and development of selective hydrogenation of alkynes and dienes[J]. Petrochemical Technology, 1998, 27(1): 53-58. | |
4 | Takht Ravanchi M, Sahebdelfar S. Pd-Ag/Al2O3 catalyst: stages of deactivation in tail-end acetylene selective hydrogenation[J]. Applied Catalysis A: General, 2016, 525: 197-203. |
5 | Aeowjaroenlap H, Chotiwiriyakun K, Tiensai N, et al. Model-based optimization of an acetylene hydrogenation reactor to improve overall ethylene plant economics[J]. Industrial & Engineering Chemistry Research, 2018, 57(30): 9943-9951. |
6 | Dehghani O, Bolhasani A, Hosseini S, et al. Process intensification of selective acetylene hydrogenation reactor by bed configuration change: a case study of an ethylene plant[J]. Case Studies in Chemical and Environmental Engineering, 2023, 7: 100321. |
7 | Dehghani Khold O, Parhoudeh M, Rahimpour M R, et al. A new configuration in the tail-end acetylene hydrogenation reactor to enhance catalyst lifetime and performance[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 8-21. |
8 | Szukiewicz M, Kaczmarski K, Petrus R. Modelling of fixed-bed reactor: two models of industrial reactor for selective hydrogenation of acetylene[J]. Chemical Engineering Science, 1998, 53(1): 149-155. |
9 | Ge X H, Cao Y Q, Yan K L, et al. Increasing the distance of adjacent palladium atoms for configuration matching in selective hydrogenation[J]. Angewandte Chemie International Edition, 2022, 61(51): e202215225. |
10 | Ge X H, Dou M Y, Cao Y Q, et al. Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene[J]. Nature Communications, 2022, 13: 5534. |
11 | Cao Y Q, Zhang H, Ji S F, et al. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene[J]. Angewandte Chemie International Edition, 2020, 59(28): 11647-11652. |
12 | Takht Ravanchi M, Sahebdelfar S, Komeili S. Acetylene selective hydrogenation: a technical review on catalytic aspects[J]. Reviews in Chemical Engineering, 2018, 34(2): 215-237. |
13 | McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142-153. |
14 | Zhang L L, Zhou M X, Wang A Q, et al. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms[J]. Chemical Reviews, 2020, 120(2): 683-733. |
15 | Wang Z, Luo Q, Mao S J, et al. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts[J]. Nano Research, 2022, 15(12): 10044-10062. |
16 | Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation[J]. Journal of Catalysis, 1996, 158(1): 267-278. |
17 | Jurtz N, Kraume M, Wehinger G D. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD)[J]. Reviews in Chemical Engineering, 2019, 35(2): 139-190. |
18 | Partopour B, Dixon A G. 110th anniversary: commentary: CFD as a modeling tool for fixed bed reactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5733-5736. |
19 | Dixon A G, Partopour B. Computational fluid dynamics for fixed bed reactor design[J]. Annual Review of Chemical and Biomolecular Engineering, 2020, 11: 109-130. |
20 | Wehinger G D, Ambrosetti M, Cheula R, et al. Quo vadis multiscale modeling in reaction engineering? — A perspective[J]. Chemical Engineering Research and Design, 2022, 184: 39-58. |
21 | Partopour B, Dixon A G. An integrated workflow for resolved-particle packed bed models with complex particle shapes[J]. Powder Technology, 2017, 322: 258-272. |
22 | Moghaddam E M, Foumeny E A, Stankiewicz A I, et al. Rigid body dynamics algorithm for modeling random packing structures of nonspherical and nonconvex pellets[J]. Industrial & Engineering Chemistry Research, 2018, 57(44): 14988-15007. |
23 | Chen H, Shi Y, Li Z, et al. Structure-resolved CFD simulations to guide catalyst packing of selective NO reduction[J]. Chemical Engineering Science, 2022, 446: 136888. |
24 | Partopour B, Dixon A G. Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling[J]. AIChE Journal, 2020, 66(5): e16904. |
25 | Wehinger G D, Eppinger T, Kraume M. Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane[J]. Chemical Engineering Science, 2015, 122: 197-209. |
26 | Karthik G M, Buwa V V. Particle-resolved simulations of methane steam reforming in multilayered packed beds[J]. AIChE Journal, 2018, 64(11): 4162-4176. |
27 | Liu X L, Qin B, Zhang Q F, et al. Optimizing catalyst supports at single catalyst pellet and packed bed reactor levels: a comparison study[J]. AIChE Journal, 2021, 67(8): e17163. |
28 | Dixon A G. General correlation for pressure drop through randomly-packed beds of spheres with negligible wall effects[J]. AIChE Journal, 2023, 69(6): e18035. |
29 | Dixon A G. Are there wall effects on pressure drop through randomly packed beds of spherical catalyst particles?[J]. AIChE Journal, 2024, 70(1): e18272. |
30 | Shi Y, Chen H, Chen W Y, et al. Effects of particle shape and packing style on ethylene oxidation reaction using particle-resolved CFD simulation[J]. Particuology, 2023, 82: 87-97. |
31 | Dixon A G. Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming[J]. Chemical Engineering Science, 2017, 168: 156-177. |
32 | Dong Y, Geske M, Korup O, et al. What happens in a catalytic fixed-bed reactor for n-butane oxidation to maleic anhydride? Insights from spatial profile measurements and particle resolved CFD simulations[J]. Chemical Engineering Journal, 2018, 350: 799-811. |
33 | Pachulski A, Schödel R, Claus P. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne[J]. Applied Catalysis A: General, 2012, 445: 107-120. |
34 | Hite R H, Jackson R. Pressure gradients in porous catalyst pellets in the intermediate diffusion regime[J]. Chemical Engineering Science, 1977, 32(7): 703-709. |
35 | Faghri A, Zhang Y W. Transport Phenomena in Multiphase Systems[M]. Burlington, MA: Elsevier Academic Press, 2006. |
36 | Yaws C L. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals[M]. New York: McGraw-Hill, 1999. |
37 | Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena [M]. New York: John Wiley & Sons Inc, 2002. |
[1] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[2] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[3] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[4] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[5] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[6] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[7] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[8] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[9] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[10] | Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds [J]. CIESC Journal, 2024, 75(8): 2787-2799. |
[11] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[12] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
[13] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[14] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[15] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||