CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3691-3704.DOI: 10.11949/0438-1157.20240505
• Surface and interface engineering • Previous Articles Next Articles
Aoxiang JIANG1(), Yuan CHEN1(
), Yuntang LI1, Jinbo JIANG2, Xudong PENG2, Cong ZHANG1, Bingqing WANG1
Received:
2024-05-08
Revised:
2024-06-11
Online:
2024-11-04
Published:
2024-10-25
Contact:
Yuan CHEN
江澳翔1(), 陈源1(
), 李运堂1, 江锦波2, 彭旭东2, 章聪1, 王冰清1
通讯作者:
陈源
作者简介:
江澳翔(1999—),男,硕士研究生,744439232@qq.com
基金资助:
CLC Number:
Aoxiang JIANG, Yuan CHEN, Yuntang LI, Jinbo JIANG, Xudong PENG, Cong ZHANG, Bingqing WANG. Influence of micro-gap high-speed fluid effects on compliant foil cylindrical gas film seal performance[J]. CIESC Journal, 2024, 75(10): 3691-3704.
江澳翔, 陈源, 李运堂, 江锦波, 彭旭东, 章聪, 王冰清. 微间隙高速流体效应对箔片柱面气膜密封性能的影响[J]. 化工学报, 2024, 75(10): 3691-3704.
参数 | 数值 |
---|---|
环境压力pa/MPa | 0.1 |
进口压力pin/MPa | 8 |
出口压力pout/MPa | — |
转速n/(r/min) | 30000 |
介质温度T/K | 314 |
Table 1 Working condition parameters
参数 | 数值 |
---|---|
环境压力pa/MPa | 0.1 |
进口压力pin/MPa | 8 |
出口压力pout/MPa | — |
转速n/(r/min) | 30000 |
介质温度T/K | 314 |
参数 | 数值 |
---|---|
半径R/mm | 25.4 |
密封长度L/mm | 50.8 |
半径间隙C/μm | 10 |
偏心率ε | 0.6 |
波箔片厚度tb/mm | 0.8 |
波箔片节距s/mm | 4.572 |
波箔片半弦长l/mm | 1.778 |
泊松比 | 0.3 |
弹性模量/GPa | 214 |
Table 2 Structural parameters
参数 | 数值 |
---|---|
半径R/mm | 25.4 |
密封长度L/mm | 50.8 |
半径间隙C/μm | 10 |
偏心率ε | 0.6 |
波箔片厚度tb/mm | 0.8 |
波箔片节距s/mm | 4.572 |
波箔片半弦长l/mm | 1.778 |
泊松比 | 0.3 |
弹性模量/GPa | 214 |
高速流体效应 | Case Ⅰ | Case Ⅱ | Case Ⅲ | Case Ⅳ | Case Ⅴ | Case Ⅵ |
---|---|---|---|---|---|---|
湍流效应 | 忽略 | 考虑 | 忽略 | 考虑 | 忽略 | 考虑 |
阻塞效应 | 忽略 | 忽略 | 考虑 | 考虑 | 考虑 | 考虑 |
惯性效应 | 忽略 | 忽略 | 忽略 | 忽略 | 考虑 | 考虑 |
Table 3 High-speed fluid effects combination model
高速流体效应 | Case Ⅰ | Case Ⅱ | Case Ⅲ | Case Ⅳ | Case Ⅴ | Case Ⅵ |
---|---|---|---|---|---|---|
湍流效应 | 忽略 | 考虑 | 忽略 | 考虑 | 忽略 | 考虑 |
阻塞效应 | 忽略 | 忽略 | 考虑 | 考虑 | 考虑 | 考虑 |
惯性效应 | 忽略 | 忽略 | 忽略 | 忽略 | 考虑 | 考虑 |
1 | Cho J, Choi M, Baik Y J, et al. Development of the turbomachinery for the supercritical carbon dioxide power cycle[J]. International Journal of Energy Research, 2016, 40(5): 587-599. |
2 | Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836. |
3 | Thanganadar D, Fornarelli F, Camporeale S, et al. Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application[J]. Energy, 2022, 238: 121755. |
4 | Bidkar R A, Sevincer E, Wang J F, et al. Low-leakage shaft-end seals for utility-scale supercritical CO2 turboexpanders[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 022503. |
5 | Wright S, Radel R, Vernon M, et al. Operation and analysis of a supercritical CO2 Brayton cycle[R]. Albuquerque, NM, and Livermore, CA (United States): Sandia National Laboratories (SNL), 2010. |
6 | Salehi M, Heshmat H, Walton J, et al. The application of foil seals to a gas turbine engine[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1999: 2821. |
7 | Heshmat H, Walowit J A, Pinkus O. Analysis of gas-lubricated foil journal bearings[J]. Journal of Lubrication Technology, 1983, 105(4): 647-655. |
8 | Salehi M, Heshmat H. On the fluid flow and thermal analysis of a compliant surface foil bearing and seal[J]. Tribology Transactions, 2000, 43(2): 318-324. |
9 | Salehi M, Heshmat H. Analysis of a compliant gas foil seal with turbulence effects[C]//37th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2001: 3482. |
10 | Xu J, Yu S R, Ding X X, et al. Performance of the compliant foil gas seal with surface micro-textured top foil[J]. Applied Sciences, 2022, 12(11): 5633. |
11 | 王学良, 刘美红, 熊忠汾, 等. 考虑表面粗糙度的柔性箔柱面气膜密封紊流特性分析[J]. 化工学报, 2022, 73(4): 1683-1694. |
Wang X L, Liu M H, Xiong Z F, et al. Turbulence characteristics of compliant foil gas seal considering surface roughness[J]. CIESC Journal, 2022, 73(4): 1683-1694. | |
12 | Zhang W F, Chen L Q, Yang J, et al. Static instability of the smooth annular seals with choked/unchoked flow[J]. Tribology International, 2020, 144: 106120. |
13 | 车国铚, 杨启超, 魏志国, 等. 超临界二氧化碳透平机械用气体轴承的研究进展及关键技术[J]. 中国电机工程学报, 2022, 42(15): 5616-5630. |
Che G Z, Yang Q C, Wei Z G, et al. Research progress and key technologies of gas bearings for supercritical carbon dioxide turbomachinery[J]. Proceedings of the CSEE, 2022, 42(15): 5616-5630. | |
14 | Constantinescu V N, Galetuse S. Operating characteristics of journal bearings in turbulent inertial flow[J]. Journal of Lubrication Technology, 1982, 104(2): 173-179. |
15 | 温建全. 超临界二氧化碳介质箔片轴承弹流耦合研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
Wen J Q. Theoretical study on characteristics of compliant foil bearings lubricated with supercritical carbon dioxide[D]. Harbin: Harbin Institute of Technology, 2017. | |
16 | 朱鹏程, 管玉坤, 门日秀, 等. 超临界二氧化碳系统用箔片气体动压轴承静特性研究[J]. 振动工程学报, 2024, 37(5): 875-884. |
Zhu P C, Guan Y K, Men R X, et al. Static characteristics of gas foil bearing for supercritical carbon dioxide system[J]. Journal of Vibration Engineering, 2024, 37(5): 875-884 | |
17 | 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323. | |
18 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
19 | 韩煜航, 李红智, 张一帆, 等. 超临界二氧化碳干气密封实际气体效应和湍流效应分析[J]. 热力发电, 2023, 52(6): 63-72. |
Han Y H, Li H Z, Zhang Y F, et al. Analysis of real gas and turbulence effect of supercritical carbon dioxide dry gas seal[J]. Thermal Power Generation, 2023, 52(6): 63-72. | |
20 | 胡航领, 林志民, 虞翔宇, 等. 高参数超临界二氧化碳干气密封性能分析研究[J]. 化工设备与管道, 2022, 59(5): 62-68. |
Hu H L, Lin Z M, Yu X Y, et al. Simulation analysis on sealing performance of supernal parameters supercritical carbon dioxide dry gas seal[J]. Process Equipment & Piping, 2022, 59(5): 62-68. | |
21 | 章聪, 彭旭东, 江锦波, 等. 实际气体、阻塞和湍流效应对超临界CO2干气密封性能的影响[J]. 中国电机工程学报, 2022, 42(20): 7563-7574. |
Zhang C, Peng X D, Jiang J B, et al. Influence of real gas, choked flow, and turbulence effect on performance of supercritical CO2 dry gas seals[J]. Proceedings of the CSEE, 2022, 42(20): 7563-7574. | |
22 | 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
Jiang J B, Teng L M, Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation[J]. CIESC Journal, 2021, 72(4): 2190-2202. | |
23 | 朱新龙. 高速低黏度润滑剂的滑动轴承润滑性能分析[D]. 合肥: 合肥工业大学, 2015. |
Zhu X L. Lubrication performance analysis for high speed and low viscosity lubricant journal bearing[D]. Hefei: Hefei University of Technology, 2015. | |
24 | Constantinescu V N, Galetuse S, Kennedy F. On the comparison between lubrication theory, including turbulence and inertia forces, and some existing experimental data[J]. Journal of Lubrication Technology, 1975, 97(3): 439-448. |
25 | Salehi M, Heshmat H. Evaluation of large compliant gas foil seals under engine simulated conditions[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002: 3792. |
26 | Zhang G H, Xu K F, Han J Z, et al. Performance of textured foil journal bearing considering the influence of relative texture depth[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236(11): 2105-2117. |
27 | 张正. 高速低黏粗糙表面滑动轴承弹性流体动力润滑分析[D]. 合肥: 合肥工业大学, 2017. |
Zhang Z. Elastohydrodynamic lubrication analysis for high speed and low viscosity rough surface of journal bearing[D]. Hefei: Hefei University of Technology, 2017. | |
28 | Salim M S, Saeed M, Kim M H. Performance analysis of the supercritical carbon dioxide re-compression brayton cycle[J]. Applied Sciences, 2020, 10(3): 1129. |
29 | 严如奇, 洪先志, 包鑫, 等. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690. |
Yan R Q, Hong X Z, Bao X, et al. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal[J]. CIESC Journal, 2020, 71(8): 3681-3690. | |
30 | 岑少起, 杨金锋, 郭红, 等. 惯性项对动静压浮环径向轴承压力场的影响[J]. 郑州工业大学学报, 2001, 22(3): 6-8. |
Cen S Q, Yang J F, Guo H, et al. The pressure field of cylinder floating ring bearing with the influence of fluid's inertiaforce[J]. Journal of Zhengzhou University of Technology, 2001, 22(3): 6-8. |
[1] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[2] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[3] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[4] | Zhi ZHU, Hengjie XU, Wei CHEN, Wenyuan MAO, Qiangguo DENG, Xuejian SUN. Study on critical chocked characteristics of supercritical carbon dioxide spiral groove dry gas seal under thermal-fluid coupling lubrication [J]. CIESC Journal, 2024, 75(2): 604-615. |
[5] | Mingcheng SHAO, Yugui PAN, Zengli WANG, Qiang ZHAO. Study on the thermal properties of CO2/CH4 mixtures in the theoretical trans-critical pressurization process [J]. CIESC Journal, 2024, 75(10): 3742-3751. |
[6] | Di WANG, Yinghan CUI, Lingfang SUN, Yunlong ZHOU. Thermodynamic analysis of supercritical carbon dioxide mixed working fluid energy storage system [J]. CIESC Journal, 2024, 75(10): 3414-3423. |
[7] | Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media [J]. CIESC Journal, 2024, 75(1): 110-119. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[11] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Yifan HE, Shuai YU, Xingqing YAN, Jianliang YU. Construction of CO2 decompression wave propagation model based on method of characteristics and research on crack arrest wall thickness [J]. CIESC Journal, 2023, 74(12): 5038-5047. |
[14] | Yuhan XIE, Xiangkai MENG, Wenjing ZHAO, Yuheng WANG, Xianzhi HONG, Xudong PENG. Thermal mechanical deformation and sealing performance analysis of upstream pumping mechanical seals under high-pressure conditions [J]. CIESC Journal, 2023, 74(10): 4241-4251. |
[15] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||