CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2180-2189.DOI: 10.11949/0438-1157.20240210
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
He ZHAO(), Yingjie FEI, Chunying ZHU(
), Taotao FU, Youguang MA
Received:
2024-02-27
Revised:
2024-03-20
Online:
2024-07-03
Published:
2024-06-25
Contact:
Chunying ZHU
通讯作者:
朱春英
作者简介:
赵赫(1999—),女,硕士研究生,zhzhaohezh@tju.edu.cn
基金资助:
CLC Number:
He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems[J]. CIESC Journal, 2024, 75(6): 2180-2189.
赵赫, 费滢洁, 朱春英, 付涛涛, 马友光. 高黏体系中纳米颗粒稳定气泡的形变及破裂行为[J]. 化工学报, 2024, 75(6): 2180-2189.
Fig.4 Flow pattern diagram of bubble shape in nanofluid (data for nanofluid system, dot-dash line is transition line from slug bubbles to dumbbell bubbles in particle-free fluid, dash line is transition line from dumbbell bubbles to grenade bubbles in particle-free fluid)
Fig.7 Effect of dispersed phase flow rate on curvatures of bubble head and tail (Qc = 1.8 ml·min-1)rhombus—particle-free fluid system; triangle—nanofluid system; solid symbols—slug bubbles; hollow symbols—dumbbell bubbles; semi-solid symbols—grenade bubbles
Fig.12 Evolution of thinning rate of minimum neck width with time for breakup of bubble in microfluidic Y-junction (Qc = 1.0 ml·min-1, Qd = 1.0 ml·min-1)
1 | Li Y M, Wang X X, Yu S X, et al. Bubble melt electrospinning for production of polymer microfibers[J]. Polymers, 2018, 10(11): 1246. |
2 | Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2 [J]. Journal of Materials Chemistry A, 2017, 5(25): 12822-12827. |
3 | Naira V R, Das D, Maiti S K. A novel bubble-driven internal mixer for improving productivities of algal biomass and biodiesel in a bubble-column photobioreactor under natural sunlight[J]. Renewable Energy, 2020, 157: 605-615. |
4 | 王财林, 顾帅威, 李玉星, 等. CO2-原油体系发泡特性实验研究[J]. 化工学报, 2019, 70(1): 251-260. |
Wang C L, Gu S W, Li Y X, et al. Experimental study on foaming characteristics of CO2-crude oil mixture[J].CIESC Journal, 2019, 70(1): 251-260. | |
5 | Zhang C, Liu Y Z, Jiao W Z, et al. An optimization method for enhancement of gas-liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle[J]. Chinese Journal of Chemical Engineering, 2023, 53: 83-88. |
6 | Liu Y Y, Yao C Q, Chen G W. Gas-liquid-liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors[J]. Chinese Journal of Chemical Engineering, 2022, 50: 85-94. |
7 | Wang Y, Zhang L W, Du W X, et al. Controllable bubble transport on bioinspired heteromorphic magnetically steerable microcilia[J]. Advanced Functional Materials, 2023, 33(35): 2302666. |
8 | Li J, Guo Z G. Patterned slippery surface for bubble directional transportation and collection fabricated via a facile method[J]. Research, 2019, 2019: 9139535. |
9 | Farhadi H, Riahi S, Ayatollahi S, et al. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: stability and mobility control[J]. Chemical Engineering Research and Design, 2016, 111: 449-460. |
10 | Lü M, Ning Z, Yan K, et al. Instability and breakup of cavitation bubbles within diesel drops[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 262-267. |
11 | Shen F, Qiao M, Shan G C, et al. Enhancement of bubble stability in cement-based materials by a sustained-release effect of silica nanoparticles[J]. Construction and Building Materials, 2023, 362: 129739. |
12 | 张晴, 吴颉, 马光辉. 用于超声造影成像的颗粒稳定气泡制备[J]. 过程工程学报, 2022, 22(6): 828-838. |
Zhang Q, Wu J, Ma G H. Preparation of particle stabilized bubbles for contrast ultrasound imaging[J]. Chinese Journal of Process Engineering, 2022, 22(6): 828-838. | |
13 | Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722-3725. |
14 | Binks B P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41. |
15 | 沈秋颖, Tahir Muhammad Faran, Cumbula Armando José, 等. 对称分支并行微通道中气液两相流的均匀性规律[J].化工学报, 2018, 69(11): 4640-4647. |
Shen Q Y, Tahir M F, Cumbula A J, et al. Uniformity of gas-liquid two-phase flow in symmetrical parallelized branching microchannels[J]. CIESC Journal, 2018, 69(11): 4640-4647. | |
16 | 费滢洁, 朱春英, 付涛涛, 等. Y型微通道内纳米颗粒稳定气泡的完全阻塞破裂动力学[J].化工学报, 2022, 73(1): 213-221. |
Fei Y J, Zhu C Y, Fu T T, et al. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction[J].CIESC Journal, 2022, 73(1): 213-221. | |
17 | Babamahmoudi S, Riahi S. Application of nano particle for enhancement of foam stability in the presence of crude oil: experimental investigation[J]. Journal of Molecular Liquids, 2018, 264: 499-509. |
18 | Yekeen N, Idris A K, Manan M A, et al. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 347-357. |
19 | Abdel-Fattah A I, El-Genk M S. Sorption of hydrophobic, negatively charged microspheres onto a stagnant air/water interface[J]. Journal of Colloid and Interface Science, 1998, 202(2): 417-429. |
20 | Vignati E, Piazza R, Lockhart T P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion[J]. Langmuir, 2003, 19(17): 6650-6656. |
21 | Glaser N, Adams D J, Böker A, et al. Janus particles at liquid-liquid interfaces[J]. Langmuir, 2006, 22(12): 5227-5229. |
22 | Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9468-9477. |
23 | Lv Q C, Li Z M, Li B F, et al. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks[J]. Scientific Reports, 2017, 7: 5063. |
24 | Yao C Q, Zhao Y C, Chen G W. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189: 340-359. |
25 | Day R F, Hinch E J, Lister J R. Self-similar capillary pinchoff of an inviscid fluid[J]. Physical Review Letters, 1998, 80(4): 704-707. |
26 | Lister J R, Stone H A. Capillary breakup of a viscous thread surrounded by another viscous fluid[J]. Physics of Fluids, 1998, 10(11): 2758-2764. |
27 | Sheng L, Chang Y, Deng J, et al. Taylor bubble generation rules in liquids with a higher viscosity in a T-junction microchannel[J]. Industrial & Engineering Chemistry Research, 2022, 61(6): 2623-2632. |
28 | Fei Y J, Zhu C Y, Fu T T, et al. Slug bubble deformation and its influence on bubble breakup dynamics in microchannel[J]. Chinese Journal of Chemical Engineering, 2022, 50: 66-74. |
29 | Yu X X, Wang R Y, Wu Y N, et al. The flow behaviors of nanoparticle-stabilized bubbles in microchannel: influence of surface hardening[J]. AIChE Journal, 2020, 66(4): e16865. |
30 | Fei Y J, Zhu C Y, Fu T T, et al. The breakup dynamics of bubbles stabilized by nanoparticles in a microfluidic Y-junction[J]. Chemical Engineering Science, 2021, 245: 116867. |
31 | Li Q, Angeli P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels[J]. Chemical Engineering Journal, 2017, 328: 717-736. |
32 | Fu T T, Ma Y G, Funfschilling D, et al. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18): 4184-4195. |
33 | Jullien M C, Tsang Mui Ching M J, Cohen C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7): 072001. |
34 | Hoang D A, Portela L M, Kleijn C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, 717: R4. |
35 | Fan H, Striolo A. Nanoparticle effects on the water-oil interfacial tension[J]. Physical Review E, 2012, 86(5): 051610. |
36 | Taccoen N, Lequeux F, Gunes D Z, et al. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams[J]. Physical Review X, 2016, 6(1): 011010. |
[1] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[2] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[3] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[4] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[5] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[6] | Xiaobin ZHAN, Huibin WANG, Yalong JIANG, Tielin SHI. Research on power consumption characteristics of high viscosity fluid mixing in acoustic resonance mixer [J]. CIESC Journal, 2024, 75(2): 531-542. |
[7] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[8] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[9] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[10] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[11] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[12] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[15] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||