CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4369-4377.DOI: 10.11949/0438-1157.20240574
• Energy and environmental engineering • Previous Articles Next Articles
Shuang LIANG1(), Xingxun LI1(
), Longyan GAO1, Xuqiang GUO2, Guangjin CHEN1, Changyu SUN1
Received:
2024-05-30
Revised:
2024-08-09
Online:
2024-12-26
Published:
2024-11-25
Contact:
Xingxun LI
梁爽1(), 李兴洵1(
), 高龙燕1, 郭绪强2, 陈光进1, 孙长宇1
通讯作者:
李兴洵
作者简介:
梁爽(1995—),男,博士研究生,2697972207@qq.com
基金资助:
CLC Number:
Shuang LIANG, Xingxun LI, Longyan GAO, Xuqiang GUO, Guangjin CHEN, Changyu SUN. Research on kinetics of methane hydrate film growth on water droplet in oil phase[J]. CIESC Journal, 2024, 75(11): 4369-4377.
梁爽, 李兴洵, 高龙燕, 郭绪强, 陈光进, 孙长宇. 油相中水滴表面甲烷水合物膜生长动力学研究[J]. 化工学报, 2024, 75(11): 4369-4377.
油样 | 温度/ K | 压力/ MPa | ΔP/MPa | ψ | 实验值/ (mm/s) | 计算值/ (mm/s) | AARD/% |
---|---|---|---|---|---|---|---|
甲苯 | 274.15 | 5.37 | 2.48 | 0.0315 | 0.1730 | 0.1929 | 11.48 |
6.00 | 3.11 | 0.3167 | 0.3036 | 4.13 | |||
6.63 | 3.74 | 0.4394 | 0.4394 | 0.00 | |||
7.26 | 4.37 | 0.6301 | 0.6001 | 4.76 | |||
混合油 | 274.15 | 5.37 | 2.48 | 0.0339 | 0.1843 | 0.2076 | 12.67 |
6.00 | 3.11 | 0.3525 | 0.3268 | 7.31 | |||
6.63 | 3.74 | 0.4640 | 0.4728 | 1.90 | |||
7.26 | 4.37 | 0.6511 | 0.6458 | 0.80 | |||
正庚烷 | 274.15 | 5.37 | 2.48 | 0.0385 | 0.1950 | 0.2358 | 20.93 |
6.00 | 3.11 | 0.3961 | 0.3711 | 6.31 | |||
6.63 | 3.74 | 0.5256 | 0.5370 | 2.17 | |||
7.26 | 4.37 | 0.7415 | 0.7334 | 1.09 |
Table 1 The predicted growth rates of hydrate film under different conditions
油样 | 温度/ K | 压力/ MPa | ΔP/MPa | ψ | 实验值/ (mm/s) | 计算值/ (mm/s) | AARD/% |
---|---|---|---|---|---|---|---|
甲苯 | 274.15 | 5.37 | 2.48 | 0.0315 | 0.1730 | 0.1929 | 11.48 |
6.00 | 3.11 | 0.3167 | 0.3036 | 4.13 | |||
6.63 | 3.74 | 0.4394 | 0.4394 | 0.00 | |||
7.26 | 4.37 | 0.6301 | 0.6001 | 4.76 | |||
混合油 | 274.15 | 5.37 | 2.48 | 0.0339 | 0.1843 | 0.2076 | 12.67 |
6.00 | 3.11 | 0.3525 | 0.3268 | 7.31 | |||
6.63 | 3.74 | 0.4640 | 0.4728 | 1.90 | |||
7.26 | 4.37 | 0.6511 | 0.6458 | 0.80 | |||
正庚烷 | 274.15 | 5.37 | 2.48 | 0.0385 | 0.1950 | 0.2358 | 20.93 |
6.00 | 3.11 | 0.3961 | 0.3711 | 6.31 | |||
6.63 | 3.74 | 0.5256 | 0.5370 | 2.17 | |||
7.26 | 4.37 | 0.7415 | 0.7334 | 1.09 |
1 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008. |
Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology[M]. Beijing: Chemical Industry Press, 2008. | |
2 | Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry, 1934, 26(8): 851-855. |
3 | 杨丽丽, 王陆新, 潘继平. 全球深水油气勘探开发现状、前景及启示[J]. 中国矿业, 2017, 26(S2): 14-17. |
Yang L L, Wang L X, Pan J P. Situation and prospect of global deepwater oil and gas exploration and development[J]. China Mining Magazine, 2017, 26(S2): 14-17. | |
4 | Lv X F, Liu Y, Zhou S D, et al. Study on the decomposition mechanism and kinetic model of natural gas hydrate slurry in water-in-oil emulsion flowing systems[J]. RSC Advances, 2021, 11(7): 3879-3889. |
5 | Mu L, Li S, Ma Q L, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34. |
6 | Chen J, Liu J, Chen G J, et al. Insights into methane hydrate formation, agglomeration, and dissociation in water+diesel oil dispersed system[J]. Energy Conversion and Management, 2014, 86: 886-891. |
7 | 宋光春, 施政灼, 李玉星, 等. 油水体系内水合物的生成: 温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345. |
Song G C, Shi Z Z, Li Y X, et al. Hydrate formation in oil-water systems: investigations of the influences of temperature, pressure and rotation rate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345. | |
8 | de Almeida V, Serris E, Lavalle G, et al. Mechanisms of hydrate blockage in oil-water dispersions based on flow loop experiments[J]. Chemical Engineering Science, 2023, 273: 118632. |
9 | Chen J, Chen G J, Yuan Q, et al. Insights into induction time and agglomeration of methane hydrate formation in diesel oil dominated dispersed systems[J]. Energy, 2019, 170: 604-610. |
10 | Mali G A, Chapoy A, Tohidi B. Investigation into the effect of subcooling on the kinetics of hydrate formation[J]. The Journal of Chemical Thermodynamics, 2018, 117: 91-96. |
11 | Farhadian A, Varfolomeev M A, Rezaeisadat M, et al. Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance[J]. Energy, 2020, 210: 118549. |
12 | Talatori S, Barth T. Rate of hydrate formation in crude oil/gas/water emulsions with different water cuts[J]. Journal of Petroleum Science and Engineering, 2011, 80(1): 32-40. |
13 | Sharifi H, Ripmeester J, Walker V K, et al. Kinetic inhibition of natural gas hydrates in saline solutions and heptane[J]. Fuel, 2014, 117: 109-117. |
14 | Wang L M, Zheng X, Xiao P, et al. Effects of wax on the formation of methane hydrate in oil-dominate systems: experiments and molecular dynamics simulations[J]. Fuel, 2024, 357: 129748. |
15 | Song G C, Li Y X, Wang W C, et al. Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave[J]. AIChE Journal, 2019, 65(9): 1-14. |
16 | Longinos S N, Parlaktuna M. The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(2): 771-794. |
17 | Das A, Farnham T A, Bengaluru Subramanyam S, et al. Designing ultra-low hydrate adhesion surfaces by interfacial spreading of water-immiscible barrier films[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21496-21502. |
18 | Aspenes G, Høiland S, Borgund A E, et al. Wettability of petroleum pipelines: influence of crude oil and pipeline material in relation to hydrate deposition[J]. Energy & Fuels, 2010, 24(1): 483-491. |
19 | Kolotova D S, Derkach S R, Simon S, et al. Evaluation of anti-agglomerate hydrate inhibitor in water-in-crude oil emulsions of different water cut[J]. Petroleum Science and Technology, 2020, 38(19): 922-928. |
20 | Liu Z X, Song Y C, Liu W G, et al. Formation of methane hydrate in oil-water emulsion governed by the hydrophilic and hydrophobic properties of non-ionic surfactants[J]. Energy & Fuels, 2019, 33(6): 5777-5784. |
21 | 王唯, 张东旭, 李遵照, 等. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
Wang W, Zhang D X, Li Z Z, et al. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. | |
22 | Almashwali A A, Bavoh C B, Lal B, et al. Gas hydrate in oil-dominant systems: a review[J]. ACS Omega, 2022, 7(31): 27021-27037. |
23 | 彭宝仔, 罗虎, 孙长宇, 等. 甲烷水合物膜生长动力学研究[J]. 化学学报, 2007, 65(2): 95-99. |
Peng B Z, Luo H, Sun C Y, et al. Study on growth kinetics of methane hydrate film[J]. Acta Chimica Sinica, 2007, 65(2): 95-99. | |
24 | 宋瑛, 田宜灵, 肖衍繁, 等. 二元液液系统界面张力[J]. 化工学报, 1999, 50(5): 620-628. |
Song Y, Tian Y L, Xiao Y F, et al. Interfacial tensions of binary liquid-liquid systems[J]. CIESC Journal, 1999, 50(5): 620-628. | |
25 | Li S L, Wang Y F, Sun C Y, et al. Factors controlling hydrate film growth at water/oil interfaces[J]. Chemical Engineering Science, 2015, 135: 412-420. |
26 | Pérez-Hernández N, Luong T Q, Febles M, et al. The mobility of water molecules through hydrated pores[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9616-9630. |
27 | Liang H Y, Guan D W, Yang L, et al. Multi-scale characterization of shell thickness and effective volume fraction during gas hydrates formation: a kinetic study[J]. Chemical Engineering Journal, 2021, 424: 130360. |
28 | 陆引哲, 刘道平, 杨亮. 悬垂水滴与悬浮气泡表面气体水合物形成特性对比[J]. 能源研究与信息, 2015, 31(1): 48-53. |
Lu Y Z, Liu D P, Yang L. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble[J]. Energy Research and Information, 2015, 31(1): 48-53. | |
29 | Zeng X Y, Zhong J R, Sun Y F, et al. Investigating the partial structure of the hydrate film formed at the gas/water interface by Raman spectra[J]. Chemical Engineering Science, 2017, 160: 183-190. |
30 | 马沛生, 华超, 夏淑倩. 甲烷在烷烃中溶解性质的研究[J]. 高校化学工程学报, 2002, 16(6): 680-685. |
Ma P S, Hua C, Xia S Q. Study of the solubility of methane in alkanes[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 680-685. | |
31 | 薛海涛, 卢双舫, 付晓泰. 甲烷、二氧化碳和氮气在油相中溶解度的预测模型[J]. 石油与天然气地质, 2005, 26(4): 444-449. |
Xue H T, Lu S F, Fu X T. Forecasting model of solubility of CH4, CO2 and N2 in crude oil[J]. Oil & Gas Geology, 2005, 26(4): 444-449. | |
32 | 郭玉高, 马沛生, 夏淑倩. 甲烷在烃类混合溶剂中高压溶解度的测定[J]. 天津大学学报(自然科学与工程技术版), 2005, 38(11): 960-965. |
Guo Y G, Ma P S, Xia S Q. Determination on the solubility of methane in hydrocarbon mixtures under high pressures[J]. Journal of Tianjin University (Science and Technology), 2005, 38(11): 960-965. | |
33 | Kishimoto M, Ohmura R. Correlation of the growth rate of the hydrate layer at a guest/liquid-water interface to mass transfer resistance[J]. Energies, 2012, 5(1): 92-100. |
34 | Li S L, Sun C Y, Liu B, et al. Initial thickness measurements and insights into crystal growth of methane hydrate film[J]. AIChE Journal, 2013, 59(6): 2145-2154. |
[1] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[2] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[3] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
[4] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[5] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[6] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
[7] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
[8] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[9] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[10] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[11] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[12] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[13] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[14] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[15] | Hongying ZHUO, Zhongzheng ZHAO, Zheng SHEN, Xiaofeng YANG, Yanqiang HUANG. Research progress on the catalytic conversion of ortho- to para-hydrogen [J]. CIESC Journal, 2024, 75(11): 3883-3895. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||