CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4403-4412.DOI: 10.11949/0438-1157.20240554
• Reviews and monographs • Previous Articles Next Articles
Yunhao LI1,2(), Chungang XU1,2(
), Xiaosen LI1,2, Zhaoyang CHEN1,2
Received:
2024-05-26
Revised:
2024-08-19
Online:
2025-01-03
Published:
2024-12-25
Contact:
Chungang XU
李云昊1,2(), 徐纯刚1,2(
), 李小森1,2, 陈朝阳1,2
通讯作者:
徐纯刚
作者简介:
李云昊(2000—),男,硕士研究生,liyh1@ms.giec.ac.cn
基金资助:
CLC Number:
Yunhao LI, Chungang XU, Xiaosen LI, Zhaoyang CHEN. Basic research progress on marine CO2 hydrate sequestration[J]. CIESC Journal, 2024, 75(12): 4403-4412.
李云昊, 徐纯刚, 李小森, 陈朝阳. 海洋CO2水合物封存基础性研究进展[J]. 化工学报, 2024, 75(12): 4403-4412.
System | Introduction time/h | CO2 gas consumed /mol | CO2 gas uptake/ (mol·mmol-1) | Hydrate formation rate /(mmol·h-1) | Cgh/% | Cwh/% |
---|---|---|---|---|---|---|
L-methionine | 100 | 0.6568 | 90.89 | 2.173 | 93.29 | 53.99 |
L-isoleucine | 112 | 0.2623 | 36.30 | 0.376 | 38.27 | 21.56 |
L-threonine | 16.6 | 0.4587 | 56.41 | 5.427 | 70.54 | 33.84 |
SDS | 150 | 0.5349 | 66.69 | 1.422 | 80.75 | 40.01 |
brine | 28 | 0.4270 | 57.11 | 7.494 | 68.38 | 34.26 |
Table 1 Measured CO2 hydrate formation kinetic data at 0.2%(mass) of L-meth, L-iso, L-threo, and SDS in 3.3%(mass) brine solution at 4 MPa and 274.15 K in quartz sand[57]
System | Introduction time/h | CO2 gas consumed /mol | CO2 gas uptake/ (mol·mmol-1) | Hydrate formation rate /(mmol·h-1) | Cgh/% | Cwh/% |
---|---|---|---|---|---|---|
L-methionine | 100 | 0.6568 | 90.89 | 2.173 | 93.29 | 53.99 |
L-isoleucine | 112 | 0.2623 | 36.30 | 0.376 | 38.27 | 21.56 |
L-threonine | 16.6 | 0.4587 | 56.41 | 5.427 | 70.54 | 33.84 |
SDS | 150 | 0.5349 | 66.69 | 1.422 | 80.75 | 40.01 |
brine | 28 | 0.4270 | 57.11 | 7.494 | 68.38 | 34.26 |
1 | Amstrup S C, Deweaver E T, Douglas D C, et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence[J]. Nature, 2010, 468(7326): 955-958. |
2 | Stainforth D A, Aina T, Christensen C, et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases[J]. Nature, 2005, 433(7024): 403-406. |
3 | Ajayi T, Gomes J S, Bera A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches[J]. Petroleum Science, 2019, 16(5): 1028-1063. |
4 | Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681-686. |
5 | Ricke K L, Orr J C, Schneider K, et al. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections[J]. Environmental Research Letters, 2013, 8(3): 034003. |
6 | Siegel D A, DeVries T, Doney S C, et al. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies[J]. Environmental Research Letters, 2021, 16(10): 104003. |
7 | Kumar Y, Sangwai J S. A perspective on the effect of physicochemical parameters, macroscopic environment, additives, and economics to harness the large-scale hydrate-based CO2 sequestration potential in oceans[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 10950-10979. |
8 | Zulqarnain M, Mohd Yusoff M H, Keong L K, et al. Recent development of integrating CO2 hydrogenation into methanol with ocean thermal energy conversion (OTEC) as potential source of green energy[J]. Green Chemistry Letters and Reviews, 2023, 16(1): 2152740. |
9 | Sun X, Shang A R, Wu P, et al. A review of CO2 marine geological sequestration[J]. Processes, 2023, 11(7): 2206. |
10 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
11 | Englezos P. Clathrate hydrates[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1251-1274. |
12 | Zheng J J, Chong Z R, Qureshi M F, et al. Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization[J]. Energy & Fuels, 2020, 34(9): 10529-10546. |
13 | Nesterov A N, Reshetnikov A M. New combination of thermodynamic and kinetic promoters to enhance carbon dioxide hydrate formation under static conditions[J]. Chemical Engineering Journal, 2019, 378: 122165. |
14 | Qureshi M F, Khandelwal H, Usadi A, et al. CO2 hydrate stability in oceanic sediments under brine conditions[J]. Energy, 2022, 256: 124625. |
15 | Park S, Koh D Y, Kang H, et al. Effect of molecular nitrogen on multiple hydrogen occupancy in clathrate hydrates[J]. The Journal of Physical Chemistry C, 2014, 118(35):20203-20208. |
16 | Zatsepina O Y, Buffett B A. Phase equilibrium of gas hydrate: implications for the formation of hydrate in the deep sea floor[J]. Geophysical Research Letters, 1997, 24(13): 1567-1570. |
17 | Duan Z H, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271. |
18 | House K Z, Schrag D P, Harvey C F, et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12291-12295. |
19 | Chong Z R, Koh J W, Linga P. Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments[J]. Energy, 2017, 137: 518-529. |
20 | Jacobson L C, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society, 2010, 132(33): 11806-11811. |
21 | Khurana M, Yin Z Y, Linga P. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11176-11203. |
22 | Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 169-196. |
23 | Liang R D, Xu H J, Shen Y N, et al. Nucleation and dissociation of methane clathrate embryo at the gas-water interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23410-23415. |
24 | Kiran B S, Prasad P S R. Storage of methane gas in the form of clathrates in the presence of natural bioadditives[J]. ACS Omega, 2018, 3(12): 18984-18989. |
25 | Fakharian H, Ganji H, Naderifar A. Desalination of high salinity produced water using natural gas hydrate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 157-162. |
26 | Chong Z R, Chan A H M, Babu P, et al. Effect of NaCl on methane hydrate formation and dissociation in porous media[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 178-189. |
27 | Tse C W, Bishnoi P R. Prediction of carbon dioxide gas hydrate formation conditions in aqueous electrolyte solutions[J]. The Canadian Journal of Chemical Engineering, 1994, 72(1): 119-124. |
28 | van der Waals J H, Platteeuw J C. Clathrate Solutions[M]. NYSE: John Wiley & Sons, Ltd.,2007. |
29 | Lee J, Kim K S, Seo Y. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375: 121974. |
30 | Mok J, Choi W, Kim S, et al. NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2 + N2 hydrate formation and its significance for CO2 sequestration[J]. Chemical Engineering Journal, 2023, 451: 138633. |
31 | Serikkali A, Van H N, Pham T K, et al. Phase equilibrium and dissociation enthalpies of CO2/cyclopentane hydrates in presence of salts for water treatment and CO2 capture: new experimental data and modeling[J]. Fluid Phase Equilibria, 2022, 556: 113410. |
32 | Zeng S Y, Yin Z Y, Ren J J, et al. Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: a thermodynamic and kinetic investigation with morphology insights[J]. Energy, 2024, 286: 129616. |
33 | Naullage P M, Bertolazzo A A, Molinero V. How do surfactants control the agglomeration of clathrate hydrates?[J]. ACS Central Science, 2019, 5(3): 428-439. |
34 | Lv X F, Lu D Y, Liu Y, et al. Study on methane hydrate formation in gas-water systems with a new compound promoter[J]. RSC Advances, 2019, 9(57): 33506-33518. |
35 | Wang F, Liu G Q, Meng H L, et al. Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2107-2113. |
36 | Kumar A, Bhattacharjee G, Kulkarni B D, et al. Role of surfactants in promoting gas hydrate formation[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12217-12232. |
37 | Sa J H, Sum A K. Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications[J]. Applied Energy, 2019, 251: 113352. |
38 | Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
39 | Heydari A, Peyvandi K. Study of biosurfactant effects on methane recovery from gas hydrate by CO2 replacement and depressurization[J]. Fuel, 2020, 272: 117681. |
40 | Hayama H, Mitarai M, Mori H, et al. Surfactant effects on crystal growth dynamics and crystal morphology of methane hydrate formed at gas/liquid interface[J]. Crystal Growth & Design, 2016, 16(10): 6084-6088. |
41 | Dicharry C, Diaz J, Torré J P, et al. Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2-CH4 gas hydrates[J]. Chemical Engineering Science, 2016, 152: 736-745. |
42 | Okutani K, Kuwabara Y, Mori Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using methane and sodium alkyl sulfates[J]. Chemical Engineering Science, 2008, 63(1): 183-194. |
43 | Tian L Q, Wu G Z. Cyclodextrins as promoter or inhibitor for methane hydrate formation?[J]. Fuel, 2020, 264: 116828. |
44 | Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation[J]. Chemical Engineering Science, 2015, 137: 896-903. |
45 | Kwon Y A, Park J M, Jeong K E, et al. Synthesis of anionic multichain type surfactant and its effect on methane gas hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 120-124. |
46 | Kumar A, Sakpal T, Linga P, et al. Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics[J]. Fuel, 2013, 105: 664-671. |
47 | Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
48 | Naeiji P, Varaminian F. Kinetic study of carbon dioxide hydrate formation by thermal analysis in the presence of two surfactants: sodium dodecyl sulfate (SDS) and lauryl alcohol ethoxylate (LAE)[J]. Journal of Molecular Liquids, 2018, 254: 120-129. |
49 | Du J W, Li H J, Wang L G. Effects of ionic surfactants on methane hydrate formation kinetics in a static system[J]. Advanced Powder Technology, 2014, 25(4): 1227-1233. |
50 | Darbouret M, Cournil M, Herri J M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants[J]. International Journal of Refrigeration, 2005, 28(5): 663-671. |
51 | David F, Vokhmin V, Ionova G. Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions[J]. Journal of Molecular Liquids, 2001, 90(1/2/3): 45-62. |
52 | Dichicco M C, Laurita S, Paternoster M, et al. Serpentinite carbonation for CO2 sequestration in the southern Apennines: preliminary study[J]. Energy Procedia, 2015, 76: 477-486. |
53 | Emerson W W, Chi C L. Exchangeable calcium, magnesium and sodium and the dispersion of illites in water(Ⅱ): Dispersion of illites in water[J]. Soil Research, 1977, 15(3): 255. |
54 | Liu Y Z, Qi H P, Liang H Y, et al. Influence mechanism of interfacial organic matter and salt system on carbon dioxide hydrate nucleation in porous media[J]. Energy, 2024, 290: 130179. |
55 | Farhang F, Nguyen A V, Hampton M A. Influence of sodium halides on the kinetics of CO2 hydrate formation[J]. Energy & Fuels, 2014, 28(2): 1220-1229. |
56 | Rehman A N, Pendyala R, Lal B. Effect of brine on the kinetics of carbon dioxide hydrate formation and dissociation in porous media[J]. Materials Today: Proceedings, 2021, 47: 1366-1370. |
57 | Rehman A N, Bavoh C B, Khan M Y, et al. Amino acid-assisted effect on hydrate-based CO2 storage in porous media with brine[J]. RSC Advances, 2024, 14(13): 9339-9350. |
58 | Claussen W F. A second water structure for inert gas hydrates[J]. The Journal of Chemical Physics, 1951, 19(11): 1425-1426. |
59 | Asadi F, Ejtemaei M, Birkett G, et al. The link between the kinetics of gas hydrate formation and surface ion distribution in the low salt concentration regime[J]. Fuel, 2019, 240: 309-316. |
60 | Karamoddin M, Varaminian F. Performance of hydrate inhibitors in tetrahydrofuran hydrate formation by using measurement of electrical conductivity[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3815-3820. |
61 | Yang S H B, Babu P, Chua S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162: 1131-1140. |
62 | Li F, Chen Z J, Dong H S, et al. Promotion effect of graphite on cyclopentane hydrate based desalination[J]. Desalination, 2018, 445: 197-203. |
63 | Moeini H, Bonyadi M, Esmaeilzadeh F, et al. Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 231-239. |
64 | Ling Z, Shi C R, Li F, et al. Desalination and Li+ enrichment via formation of cyclopentane hydrate[J]. Separation and Purification Technology, 2020, 231: 115921. |
65 | Maniavi Falahieh M, Bonyadi M, Lashanizadegan A. A new hybrid desalination method based on the CO2 gas hydrate and capacitive deionization processes[J]. Desalination, 2021, 502: 114932. |
66 | Sun Z G, Wang R Z, Ma R S, et al. Natural gas storage in hydrates with the presence of promoters[J]. Energy Conversion and Management, 2003, 44(17): 2733-2742. |
67 | Riesco N, Trusler J P M. Novel optical flow cell for measurements of fluid phase behaviour[J]. Fluid Phase Equilibria, 2005, 228: 233-238. |
68 | Babu P, Kumar R, Linga P. Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process[J]. Energy, 2013, 50: 364-373. |
69 | Arjang S, Manteghian M, Mohammadi A. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7MPa and 5.7MPa[J]. Chemical Engineering Research and Design, 2013, 91(6): 1050-1054. |
70 | da Silva Lirio C F, Pessoa F L P, Uller A M C. Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF)[J]. Chemical Engineering Science, 2013, 96: 118-123. |
[1] | Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC [J]. CIESC Journal, 2024, 75(S1): 183-194. |
[2] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[3] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[4] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[5] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[6] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[7] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[8] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[9] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[10] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[11] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[12] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[13] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[14] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
[15] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||