1 |
Bukhovko M P, Yang L, Li L W, et al. Gasification of radical coke with steam and steam-hydrogen mixtures over manganese-chromium oxides[J]. Industrial & Engineering Chemistry Research, 2020, 59(23): 10813-10822.
|
2 |
Amghizar I, Vandewalle L A, van Geem K M, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178.
|
3 |
Xiao S F, Wang J L, Huang C P, et al. Failure analysis of convection section tube in an ethylene cracking furnace due to metal dusting[J]. Engineering Failure Analysis, 2023, 154: 107642.
|
4 |
Pourabdollah K, Khoshbin R, Moghaddam M A, et al. Predictive modeling of coke formation in ethylbenzene cracking on 304 H austenitic steel surface using response surface methodology (RSM)[J]. Chemical Engineering Research and Design, 2024, 202: 191-207.
|
5 |
Kucora I, Paunjoric P, Tolmac J, et al. Coke formation in pyrolysis furnaces in the petrochemical industry[J]. Petroleum Science and Technology, 2017, 35(3): 213-221.
|
6 |
屈笑雨, 刘京雷, 徐宏, 等. 25Cr35NiNb合金表面Al-Si-Cr涂层抑制结焦性能[J]. 化工学报, 2015, 66(3): 1059-1065.
|
|
Qu X Y, Liu J L, Xu H, et al. Anti-coking characteristics of Al-Si-Cr coating on 25Cr35NiNb alloy[J]. CIESC Journal, 2015, 66(3): 1059-1065.
|
7 |
Symoens S H, Olahova N, Muñoz Gandarillas A E, et al. State-of-the-art of coke formation during steam cracking: anti-coking surface technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(48): 16117-16136.
|
8 |
Kwon H T, Bukhovko M P, Mahamulkar S, et al. Sol-gel derived CeO2/α-Al2O3 bilayer thin film as an anti-coking barrier and its catalytic coke oxidation performance[J]. AIChE Journal, 2018, 64(11): 4019-4026.
|
9 |
王志远, 丁旭东, 王博研, 等. 硫化物和硫/磷化合物的添加方式对石脑油热裂解结焦影响的研究[J]. 化工学报, 2020, 71(11): 5320-5336.
|
|
Wang Z Y, Ding X D, Wang B Y, et al. Addition methods of sulfur and sulfur/phosphorus-based compounds on coking behavior during thermal cracking of naphtha[J]. CIESC Journal, 2020, 71(11): 5320-5336.
|
10 |
Panjapornpon C, Rochpuang C, Bardeeniz S, et al. Machine learning approach with a posteriori-based feature to predict service life of a thermal cracking furnace with coking deposition[J]. Results in Engineering, 2024, 22: 102349.
|
11 |
Guan Y T, Zhang Y J, Zhang Z L, et al. Band gap regulation of LaFeO3 via doping Sr for efficient conversion of coke and steam[J]. Ceramics International, 2024, 50(12): 21526-21537.
|
12 |
Xiong H H, Liu J L, Zhang Y J, et al. Anti-coking performance of Al/Si/Cr/Ce ceramic coating during naphtha steam cracking applied on Cr25Ni35Nb alloy[J]. Chemical Engineering Research and Design, 2023, 194: 756-767.
|
13 |
Bao B B, Liu J L, Xu H, et al. Insight into a high temperature selective oxidation of HP40 alloy under a H2-H2O environment[J]. RSC Advances, 2017, 7(14): 8589-8597.
|
14 |
Bukhovko M P, Yang L, Li L W, et al. Anticoking performance of electrodeposited Mn/MnO surface coating on Fe-Ni-Cr alloy during steam cracking[J]. ACS Engineering Au, 2021, 1(1): 73-84.
|
15 |
梁贻景, 马岩, 卢展烽, 等. La1- x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778.
|
|
Liang Y J, Ma Y, Lu Z F, et al. Experimental investigation on the anti-coking performance of La1- x Sr x MnO3 perovskite coating[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778.
|
16 |
栾小建, 徐宏, 王志远, 等. SiO2/S涂层和硫磷抑制剂的抑制结焦性能研究[J]. 石油炼制与化工, 2011, 42(5): 75-80.
|
|
Luan X J, Xu H, Wang Z Y, et al. Research on the coking inhibition performance of SiO2/S coating and sulfur/phosphorus containing coking inhibitor[J]. Petroleum Processing and Petrochemicals, 2011, 42(5): 75-80.
|
17 |
Wang B, Gong X L, Zhang Z D, et al. Investigation on carburization during the repeated coking and decoking process[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13051-13059.
|
18 |
Ali S A, Ahmad T. Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts[J]. Materials Today Chemistry, 2023, 29: 101387.
|
19 |
Halder S, Kumar R A, Maity R, et al. A tailored direct-to-indirect band structure transition in double perovskite oxides influences its photocatalysis efficiency[J]. Ceramics International, 2023, 49(5): 8634-8645.
|
20 |
Wang B, Wang S X, Liu B, et al. Oxide film prepared by selective oxidation of stainless steel and anti-coking behavior during n-hexane thermal cracking[J]. Surface and Coatings Technology, 2019, 378: 124952.
|
21 |
Jampaiah D, Velisoju V K, Devaiah D, et al. Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: synergistic effects for enhanced catalytic performance[J]. Applied Surface Science, 2019, 473: 209-221.
|
22 |
Miao S, Chen S, Zeng J, et al. Synergistic effects between Mn and Co species in CO2 hydrogenation over xCo/MnO catalysts[J]. Fuel, 2024, 362: 130853.
|
23 |
Touahra F, Sehailia M, Halliche D, et al. (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: advocating the role of concurrent carbothermic redox looping in the elimination of coke[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21140-21156.
|
24 |
Müller D, Knoll C, Artner W, et al. Combining in situ X-ray diffraction with thermogravimetry and differential scanning calorimetry—an investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage[J]. Solar Energy, 2017, 153: 11-24.
|
25 |
Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures[J]. Journal of the American Ceramic Society, 2007, 90(5): 1515-1520.
|
26 |
Zhang G N, Xu Y H, Wu X Y, et al. Ultrathin ZnO coating layer to boost the electrochemical reaction kinetics of MnO cathode for advanced aqueous zinc-ion batteries[J]. Solid State Sciences, 2023, 146: 107371.
|
27 |
Oquab D, Xu N, Monceau D, et al. Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion[J]. Corrosion Science, 2010, 52(1): 255-262.
|
28 |
Zhang Z B, Albright L F. Pretreatments of coils to minimize coke formation in ethylene furnaces[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1991-1994.
|
29 |
Lu J M, Dreisinger D, Glück T. Manganese electrodeposition—A literature review[J]. Hydrometallurgy, 2014, 141: 105-116.
|
30 |
Sulcius A, Griskonis E, Kantminiene K, et al. Influence of different electrolysis parameters on electrodeposition of γ- and α-Mn from pure electrolytes—A review with special reference to Russian language literature[J]. Hydrometallurgy, 2013, 137: 33-37.
|
31 |
Xiao L, Wang S Y, Wang Y F, et al. High-capacity and self-stabilized manganese carbonate microspheres as anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25369-25378.
|
32 |
Zhang J, Lin J, Zeng Y B, et al. Morphological and structural evolution of MnO@C anode and its application in lithium-ion capacitors[J]. ACS Applied Energy Materials, 2019, 2(11): 8345-8358.
|
33 |
Tang W X, Yao M S, Deng Y Z, et al. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity[J]. Chemical Engineering Journal, 2016, 306: 709-718.
|
34 |
Guo Y Y, Zheng L M, Lan J L, et al. MnO nanoparticles encapsulated in carbon nanofibers with sufficient buffer space for high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 269: 624-631.
|
35 |
Stokłosa A. Point defects diagrams for pure and doped manganese oxide Mn1- δ O in the temperature range of 1173-1830 K[J]. Materials Chemistry and Physics, 2012, 134(2/3): 1136-1145.
|
36 |
Guan Y T, Zhang Y J, Zhang Z L, et al. Alkali metal and alkali earth metal-modified La-Fe-based perovskite catalyzed coke combustion[J]. Molecular Catalysis, 2024, 558: 114012.
|
37 |
Berbenni V, Marini A. Thermoanalytical (TGA-DSC) and high temperature X-ray diffraction (HT-XRD) study of the thermal decomposition processes in Li2CO3-MnO mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 43-58.
|
38 |
Liu B B, Zhang Y B, Wang J, et al. A further investigation on the MnO2-Fe2O3 system roasted under CO-CO2 atmosphere[J]. Advanced Powder Technology, 2019, 30(2): 302-310.
|
39 |
Ilton E S, Post J E, Heaney P J, et al. XPS determination of Mn oxidation states in Mn (hydr)oxides[J]. Applied Surface Science, 2016, 366: 475-485.
|
40 |
Pawlyta M, Rouzaud J N, Duber S. Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information[J]. Carbon, 2015, 84: 479-490.
|
41 |
Morga R, Jelonek I, Kruszewska K, et al. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes[J]. International Journal of Coal Geology, 2015, 144: 130-137.
|
42 |
Xie B S, Han H Z, Luo W. Pyrolysis coking performance of supercritical n-decane in additively manufacturing channel[J]. International Journal of Heat and Mass Transfer, 2024, 229: 125743.
|
43 |
Rantitsch G, Bhattacharyya A, Günbati A, et al. Microstructural evolution of metallurgical coke: evidence from Raman spectroscopy[J]. International Journal of Coal Geology, 2020, 227: 103546.
|
44 |
Sheng C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.
|