1 |
Bezdek M J, Chirik P J. A fresh approach to synthesizing ammonia from air and water [J]. Nature, 2019, 568: 464-466.
|
2 |
Shah J, Wu T, Lucero J, et al. Nonthermal plasma synthesis of ammonia over Ni-MOF-74 [J]. ACS Sustainable Chem. Eng., 2019, 7(1): 377-383.
|
3 |
Vegge T, SØRensen R Z, Klerke A, et al. Indirect hydrogen storage in metal ammines [M]//Walker G. Solid-State Hydrogen Storage. Cabridge England: Woodhead Publishing, 2008: 533-564.
|
4 |
Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world [J]. Nature Geosci., 2008, 1(10): 636-639.
|
5 |
Nørskov J, Chen J, Miranda R, et al. Sustainable ammonia synthesis - exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production [R]. United States: US DOE Office of Science, 2016.
|
6 |
Ashida Y, Arashiba K, Nakajima K, et al. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water [J]. Nature, 2019, 568(7753): 536-540.
|
7 |
Cao N, Zheng G. Aqueous electrocatalytic N2 reduction under ambient conditions [J]. Nano Res., 2018, 11(6): 2992-3008.
|
8 |
Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions [J]. Adv. Energy Mater., 2018, 8(22): 1800369.
|
9 |
Guo C, Ran J, Vasileff A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions [J]. Energy Environ. Sci., 2018, 11(1): 45-56.
|
10 |
Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9 μgNH3·mgcat.-1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts [J]. Adv. Mater., 2018, 30(40): 1803498.
|
11 |
Wang Z, Li Y, Yu H, et al. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures [J]. ChemSusChem, 2018, 11(19): 3480-3485.
|
12 |
Manjunatha R, Karajic A, Goldstein V, et al. Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions [J]. ACS Appl. Mater., 2019, 11(8): 7981-7989.
|
13 |
Han J, Ji X, Ren X, et al. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 [J]. J. Mater. Chem. A, 2018, 6(27): 12974-12977.
|
14 |
Zhang Y, Qiu W, Ma Y, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions [J]. ACS Catalysis, 2018, 8(9): 8540-8544.
|
15 |
Zhang L, Ji X, Ren X, et al. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies [J]. Adv. Mater., 2018, 30(28): 1800191.
|
16 |
Zhang L, Ding L X, Chen G F, et al. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets [J]. Angew. Chem. Int. Ed., 2019, 58(9): 2612-2616.
|
17 |
Luo Y, Chen G F, Ding L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions [J]. Joule, 2019, 3(1): 279-289.
|
18 |
Liu Y, Su Y, Quan X, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon [J]. ACS Catalysis, 2018, 8(2): 1186-1191.
|
19 |
Zhang X, Kong R M, Du H, et al. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions [J]. Chem. Commun., 2018, 54(42): 5323-5325.
|
20 |
Chen P, Zhang N, Wang S, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis [J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(14): 6635-6640.
|
21 |
Férey G. Hybrid porous solids: past, present, future [J]. Chem. Soc. Rev., 2008, 37(1): 191-214.
|
22 |
Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? [J]. J. Am. Chem. Soc., 2012, 134(36): 15016-15021.
|
23 |
Guo C, Zhang Y, Zhang Y, et al. An efficient approach for enhancing the catalytic activity of Ni-MOF-74 via a relay catalyst system for the selective oxidation of benzylic C—H bonds under mild conditions [J]. Chem. Commun., 2018, 54(30): 3701-3704.
|
24 |
Kuwahara Y, Yoshimura Y, Yamashita H. Liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen over a Mn-based metal-organic framework [J]. Dalton Trans., 2017, 46(26): 8415-8421.
|
25 |
Zheng F, Zhang C, Gao X, et al. Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions [J]. Electrochim. Acta, 2019, 306: 627-634.
|
26 |
中华人民共和国环境保护部. 环境空气 氨的测定 次氯酸钠-水杨酸分光光度法: HJ 534—2009[S]. 北京: 中国环境科学出版社, 2009.
|
|
Ministry of Environmental Protection of the People s Republic of China. Ambient air—determination of ammonia—sodium hypochlorite-salicylic acid spectrophotometry: HJ 534—2009[S]. Beijing: China Environmental Science Press, 2009.
|
27 |
Yao Y, Zhu S, Wang H, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces [J]. J. Am. Chem. Soc., 2018, 140(4): 1496-1501.
|
28 |
Watt G W, Chrisp J D. Spectrophotometric method for determination of hydrazine [J]. Anal. Chem., 1952, 24(12): 2006-2008.
|
29 |
Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units [J]. J. Am. Chem. Soc., 2005, 127(5): 1504-1518.
|
30 |
Sun J, Zhang X, Zhang A, et al. Preparation of Fe-Co based MOF-74 and its effective adsorption of arsenic from aqueous solution [J]. J. Environ. Sci., 2019, 80: 197-207.
|
31 |
Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode [J]. J. Mater. Chem. A, 2014, 2(39): 16640-16644.
|
32 |
Huang C, Liu R, Yang W, et al. Enhanced catalytic activity of MnCo-MOF-74 for highly selective aerobic oxidation of substituted toluene [J]. Inorg. Chem. Front., 2018, 5(8): 1923-1932.
|
33 |
Zhang Z, Xiao Y, Cui M, et al. Modulating the basicity of Zn-MOF-74 via cation exchange with calcium ions [J]. Dalton Trans., 2019, 48(40): 14971-14974.
|
34 |
Han J, Liu Z, Ma Y, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst [J]. Nano Energy, 2018, 52: 264-270.
|
35 |
Kong J, Lim A, Yoon C, et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst [J]. ACS Sustainable Chem. Eng., 2017, 5(11): 10986-10995.
|
36 |
Wang J, Yu L, Hu L, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential [J]. Nat. Commun., 2018, 9(1): 1795.
|
37 |
Xu B, Liu Z, Qiu W, et al. La2O3 nanoplate: an efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition [J]. Electrochim. Acta, 2019, 298: 106-111.
|
38 |
Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction [J]. ACS Catalysis, 2019, 9(4): 2902-2908.
|
39 |
Xian H, Wang Q, Yu G, et al. Electrochemical synthesis of ammonia by zirconia-based catalysts at ambient conditions [J]. Applied Catalysis A: General, 2019, 581: 116-122.
|
40 |
Han Z, Choi C, Hong S, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction [J]. Applied Catalysis B: Environmental, 2019, 257: 117896.
|
41 |
Dietzel P D, Morita Y, Blom R, et al. An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains [J]. Angew. Chem. Int. Ed. Engl., 2005, 44(39): 6354-6358.
|
42 |
Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: opportunities for catalysis [J]. Angew. Chem. Int. Ed. Engl., 2009, 48(41): 7502-7513.
|
43 |
Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synthesis—the selectivity challenge [J]. ACS Catalysis, 2016, 7(1): 706-709.
|