CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3329-3337.DOI: 10.11949/0438-1157.20240280
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yanhui DAI1(), Qizhao XIONG1, Qiang FANG1, Dongxiao YANG1, Yi WANG1, Yang CHEN1,2(
), Jinping LI1,2, Libo LI1,2
Received:
2024-03-08
Revised:
2024-06-05
Online:
2024-10-10
Published:
2024-09-25
Contact:
Yang CHEN
代艳辉1(), 熊启钊1, 房强1, 杨东晓1, 王毅1, 陈杨1,2(
), 李晋平1,2, 李立博1,2
通讯作者:
陈杨
作者简介:
代艳辉(2000—),女,硕士研究生,daiyanhui2024@163.com
基金资助:
CLC Number:
Yanhui DAI, Qizhao XIONG, Qiang FANG, Dongxiao YANG, Yi WANG, Yang CHEN, Jinping LI, Libo LI. In situ steam-assisted method for one-step synthesis of hierarchically porous Cu-BTC[J]. CIESC Journal, 2024, 75(9): 3329-3337.
代艳辉, 熊启钊, 房强, 杨东晓, 王毅, 陈杨, 李晋平, 李立博. 原位蒸汽辅助法用于一步制备多级孔Cu-BTC[J]. 化工学报, 2024, 75(9): 3329-3337.
Fig.3 77 K N2 adsorption and desorption isotherms and pore size distribution curves of Cu-BTC synthesized in steam phase and HP-Cu-BTC with different reaction times and acetic acid dosages
Reaction conditions | SBET/(m2/g) | Smicro /(m2/g) | Smeso/Smicro | Vt / (cm3/g) | Vmeso/ (cm3/g) | Dmeso/nm |
---|---|---|---|---|---|---|
0.1 ml-12 h | 1005 | 887 | 0.13 | 0.41 | 0.09 | 11 |
0.3 ml-12 h | 1355 | 1177 | 0.15 | 0.58 | 0.15 | 11 |
0.5 ml-12 h | 1663 | 1465 | 0.13 | 0.68 | 0.13 | 10 |
0.1 ml-24 h | 1689 | 1459 | 0.16 | 0.77 | 0.23 | 11 |
0.3 ml-24 h | 2209 | 1893 | 0.17 | 0.94 | 0.24 | 15 |
0.5 ml-24 h | 1401 | 1193 | 0.17 | 0.68 | 0.24 | 18 |
Table 1 The pore structure parameters of HP-Cu-BTC obtained by different reaction conditions
Reaction conditions | SBET/(m2/g) | Smicro /(m2/g) | Smeso/Smicro | Vt / (cm3/g) | Vmeso/ (cm3/g) | Dmeso/nm |
---|---|---|---|---|---|---|
0.1 ml-12 h | 1005 | 887 | 0.13 | 0.41 | 0.09 | 11 |
0.3 ml-12 h | 1355 | 1177 | 0.15 | 0.58 | 0.15 | 11 |
0.5 ml-12 h | 1663 | 1465 | 0.13 | 0.68 | 0.13 | 10 |
0.1 ml-24 h | 1689 | 1459 | 0.16 | 0.77 | 0.23 | 11 |
0.3 ml-24 h | 2209 | 1893 | 0.17 | 0.94 | 0.24 | 15 |
0.5 ml-24 h | 1401 | 1193 | 0.17 | 0.68 | 0.24 | 18 |
Fig. 4 (a),(b) SEM images of HP-Cu-BTC at different reaction times and acetic acid dosages; (c) TEM image of HP-Cu-BTC at reaction time of 24 h and acetic acid dosage of 0.3 ml; (d) TG curves of origional Cu-BTC and HP-Cu-BTC at reaction time of 24 h and acetic acid dosage of 0.3 ml
1 | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
2 | Li J R, Ma Y G, McCarthy M C, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[J]. Coordination Chemistry Reviews, 2011, 255(15/16): 1791-1823. |
3 | 李建惠, 兰天昊, 陈杨, 等. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179. |
Li J H, Lan T H, Chen Y, et al. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal, 2021, 72(1): 167-179. | |
4 | Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125. |
5 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
6 | Li R, Zhang W, Zhou K. Metal-organic-framework-based catalysts for photoreduction of CO2 [J]. Advanced Materials, 2018, 30(35): 1705512. |
7 | 王磊, 蒋勇, 钟达忠, 等. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585. |
Wang L, Jiang Y, Zhong D Z, et al. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol[J]. CIESC Journal, 2022, 73(8): 3576-3585. | |
8 | 童海峰, 陈再平, 刘伟, 等. 金属有机框架基敏感材料及其在气体传感器中的应用[J]. 科学通报, 2023, 68(27): 3594-3613. |
Tong H F, Chen Z P, Liu W, et al. Metal-organic framework based sensing materials for the application of gas sensors[J]. Chinese Science Bulletin, 2023, 68(27): 3594-3613. | |
9 | Xu W L, Thapa K B, Ju Q, et al. Heterogeneous catalysts based on mesoporous metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018, 373: 199-232. |
10 | Bradshaw D, El-Hankari S, Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5431-5443. |
11 | Kabtamu D M, Wu Y N, Li F T. Hierarchically porous metal-organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination[J]. Journal of Hazardous Materials, 2020, 397: 122765. |
12 | Cai G R, Ma X, Kassymova M, et al. Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy[J]. ACS Central Science, 2021, 7(8): 1434-1440. |
13 | Chen Y, Dai Y H, Xiong Q Z, et al. Synthesis of hierarchically porous Cu-BTC through phase-controlled etching[J]. Chemical Engineering Science, 2024, 297: 120293. |
14 | Choi K M, Jeon H J, Kang J K, et al. Heterogeneity within order in crystals of a porous metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(31): 11920-11923. |
15 | Shen K, Zhang L, Chen X D, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
16 | Kim D, Coskun A. Template-directed approach towards the realization of ordered heterogeneity in bimetallic metal-organic frameworks[J]. Angewandte Chemie International Edition, 2017, 56(18): 5071-5076. |
17 | 林羲栋, 唐友臣, 苏权飞, 等. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598. |
Lin X D, Tang Y C, Su Q F, et al. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications[J]. CIESC Journal, 2020, 71(6): 2586-2598. | |
18 | Qiu L G, Xu T, Li Z Q, et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie International Edition, 2008, 47(49): 9487-9491. |
19 | Wu Y N, Li F T, Zhu W, et al. Metal-organic frameworks with a three-dimensional ordered macroporous structure: dynamic photonic materials[J]. Angewandte Chemie International Edition, 2011, 50(52): 12518-12522. |
20 | Wang S H, Fan Y N, Teng J, et al. Nanoreactor based on macroporous single crystals of metal-organic framework[J]. Small, 2016, 12(41): 5702-5709. |
21 | Cui J C, Gao N, Yin X P, et al. Microfluidic synthesis of uniform single-crystalline MOF microcubes with a hierarchical porous structure[J]. Nanoscale, 2018, 10(19): 9192-9198. |
22 | Jing P, Zhang S Y, Chen W J, et al. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption[J]. Chemistry, 2018, 24(15): 3754-3759. |
23 | Doan H V, Sartbaeva A, Eloi J C, et al. Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy[J]. Scientific Reports, 2019, 9(1): 10887. |
24 | Koo J, Hwang I C, Yu X J, et al. Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching[J]. Chemical Science, 2017, 8(10): 6799-6803. |
25 | Mofokeng T P, Ipadeola A K, Tetana Z N, et al. Defect-engineered nanostructured Ni/MOF-derived carbons for an efficient aqueous battery-type energy storage device[J]. ACS Omega, 2020, 5(32): 20461-20472. |
26 | Xi D Y, Sun Q M, Xu J, et al. In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity[J]. Journal of Materials Chemistry A, 2014, 2(42): 17994-18004. |
27 | Zhang W N, Liu Y Y, Lu G, et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure[J]. Advanced Materials, 2015, 27(18): 2923-2929. |
28 | Cao S, Gody G, Zhao W, et al. Hierarchical bicontinuous porosity in metal-organic frameworks templated from functional block co-oligomer micelles[J]. Chemical Science, 2013, 4(9): 3573-3577. |
29 | Wee L H, Wiktor C, Turner S, et al. Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by Keggin polyoxometallate ions[J]. Journal of the American Chemical Society, 2012, 134(26): 10911-10919. |
30 | Albolkany M K, Liu C Y, Wang Y, et al. Molecular surgery at microporous MOF for mesopore generation and renovation[J]. Angewandte Chemie International Edition, 2021, 60(26): 14601-14608. |
31 | Chen Y, Yang C Y, Wang X Q, et al. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8[J]. Chemical Engineering Journal, 2017, 313: 179-186. |
32 | Niu L, Wu T Z, Chen M, et al. Conductive metal-organic frameworks for supercapacitors[J]. Advanced Materials, 2022, 34(52): 2200999. |
33 | Wehring M, Gascon J, Dubbeldam D, et al. Self-diffusion studies in CuBTC by PFG NMR and MD simulations[J]. The Journal of Physical Chemistry C, 2010, 114(23): 10527-10534. |
34 | Gutov O V, Molina S, Escudero-Adán E C, et al. Modulation by amino acids: toward superior control in the synthesis of zirconium metal-organic frameworks[J]. Chemistry, 2016, 22(38): 13582-13587. |
35 | Zhao N N, Xu T F, Wang K R, et al. Experimental study of physical-chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams[J]. Greenhouse Gases: Science and Technology, 2018, 8(3): 510-528. |
36 | Li H, Meng F C, Zhang S Y, et al. Crystal-growth-dominated fabrication of metal-organic frameworks with orderly distributed hierarchical porosity[J]. Angewandte Chemie International Edition, 2020, 59(6): 2457-2464. |
37 | Li Y K, Lu L, Lyu S, et al. Activated coke preparation by physical activation of coal and biomass co-carbonized chars[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105137. |
38 | 白晓芳, 陈为, 王白银, 等. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403. |
Bai X F, Chen W, Wang B Y, et al. Recent progress on electrochemical reduction of carbon dioxide[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2388-2403. | |
39 | Zhang Y, Zhang X L, Zhu Y L, et al. The origin of the electrocatalytic activity for CO2 reduction associated with metal-organic frameworks[J]. ChemSusChem, 2020, 13(10): 2552-2556. |
40 | Wen C F, Zhou M, Wu X F, et al. A copper coordination polymer precatalyst with asymmetric building units for selective CO2-to-C2H4 electrolysis[J]. Journal of Materials Chemistry A, 2023, 11(23): 12121-12129. |
[1] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[2] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[3] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
[4] | Chenxu GENG, Yuxiu SUN, Hongliang HUANG, Xiangyu GUO, Zhihua QIAO, Chongli ZHONG. Mechanochemically synthesized small sized MOF fillers assisted for highly efficient CO2 separation [J]. CIESC Journal, 2021, 72(9): 4750-4758. |
[5] | HAN Xiao,CHEN Yuting,SU Baogen,BAO Zongbi,ZHANG Zhiguo,YANG Yiwen,REN Qilong,YANG Qiwei. Advances in adsorbents for hexane isomers separation [J]. CIESC Journal, 2021, 72(7): 3445-3465. |
[6] | WANG Jiexiang, LI Hongguo, YE Songshou, ZHENG Jinbao, CHEN Binghui. Halogen-rich zinc-adeninate framework construction and its catalytic performance on CO2 cycloaddition without cocatalyst [J]. CIESC Journal, 2021, 72(7): 3686-3695. |
[7] | CHEN Rundao, ZHENG Fang, GUO Lidong, YANG Qiwei, ZHANG Zhiguo, YANG Yiwen, REN Qilong, BAO Zongbi. Advancements in adsorption separation of Xe/Kr noble gases [J]. CIESC Journal, 2021, 72(1): 14-26. |
[8] | Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218. |
[9] | Tong YANG, Xiaobo HE, Fengxiang YIN. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia [J]. CIESC Journal, 2020, 71(6): 2857-2870. |
[10] | Ye YUAN, Ming WANG, Yunqi ZHOU, Zhi WANG, Jixiao WANG. Progress in pore size regulation of metal-organic frameworks [J]. CIESC Journal, 2020, 71(2): 429-450. |
[11] | Yanqin XU, Liyue XIAO, Yuan CAO, Changguo CHEN, Dan WANG. Research on synthesis and application of metal-organic frame composites in supercapacitors [J]. CIESC Journal, 2020, 71(10): 4473-4490. |
[12] | Miao CHANG, Lei LIU, Qingyuan YANG, Dahuan LIU, Chongli ZHONG. Study on efficient separation of SF6/N2 mixture using a hydrothermally stable metal-organic framework [J]. CIESC Journal, 2020, 71(1): 320-328. |
[13] | Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143. |
[14] | Ke AN, Dong YANG, Zhanfeng ZHAO, Hanjie REN, Yao CHEN, Zhiyuan ZHOU, Zhongyi JIANG. Research progress on microenvironment regulation of metal-organic framework photocatalyst [J]. CIESC Journal, 2019, 70(10): 3776-3790. |
[15] | XU Jiaxing, CHAO Jingwei, LI Tingxian, WANG Ruzhu. Preparation and characterization of expanded graphite/metal organic frameworks composite sorbent [J]. CIESC Journal, 2018, 69(S2): 492-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||