CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4440-4448.DOI: 10.11949/0438-1157.20241377

• Special Column: Modeling and Simulation in Process Engineering • Previous Articles     Next Articles

Structural design and flow characteristics of conical gas laminar flow element

Xiaofeng CAO1,2(), Huahai ZHANG2, Jiangyun WANG1, Limin WANG2,3()   

  1. 1.State Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249, China
    2.State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-02 Revised:2025-02-02 Online:2025-10-23 Published:2025-09-25
  • Contact: Limin WANG

锥形气体层流元件结构设计及流动特性研究

曹潇风1,2(), 张华海2, 王江云1, 王利民2,3()   

  1. 1.中国石油大学(北京)重质油全国重点实验室,北京 102249
    2.中国科学院过程工程研究所介科学与 工程全国重点实验室,北京 100190
    3.中国科学院大学化学工程学院,北京 100049
  • 通讯作者: 王利民
  • 作者简介:曹潇风(1998—),男,硕士研究生,xfcao@ipe.ac.cn
  • 基金资助:
    国家自然科学基金项目(52476162);中国科学院过程工程研究所前沿基础研究项目(QYJC-2023-01)

Abstract:

A laminar flow element with a guide cone and annular cross-section was designed to solve the problem of poor linearity in traditional laminar flow meters (LFM), and pressure-measurement position was directly put in the laminar flow section for further improving the linearity between pressure difference and flow rate. Using computational fluid dynamics (CFD) simulation technology to determine a reasonable guide cone angle is 30°. Analysis of the channel size reveals that it has a significant impact on the pressure difference in the measurement section, and the flow error decreases with the increase of the channel size. The applicability of laminar flow elements to different gases was explored using air, N2 and CO2 as working fluids, and the flow errors of the three were all less than 2%. By using CFD simulation technology to simulate the new laminar flow meter, detailed data on pressure loss along the flow channel and internal flow field can be obtained, which can provide useful flow details, feasible design ideas, and improve experimental efficiency.

Key words: laminar, cone laminar flow element, optimal design, CFD, flow characteristic

摘要:

为解决常规层流流量计(laminar flow meter,LFM)线性度不佳的问题,设计了一款内有导锥、环形截面的层流元件,并且通过将引压孔设置在层流段的方式进一步提高了压差-流量线性度。采用计算流体力学(computational fluid dynamics,CFD)仿真技术确定了合理的导锥角度为30°,对流道尺寸分析发现,流道大小对测量段压差影响较大,流量误差随流道的增大而减小。以空气、N2、CO2气体为工质,探究了层流元件对不同气体的适用性,三者的流量误差均小于2%。借助CFD仿真技术对新型层流流量计进行模拟计算能够得到流道沿程压力损失和内部流场的详细数据,可以为实验提供有用的流动细节、可行的设计思路,从而提高实验效率。

关键词: 层流, 锥形层流元件, 优化设计, 计算流体力学, 流动特性

CLC Number: