CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3373-3387.DOI: 10.11949/0438-1157.20241514
• Intelligent process engineering • Previous Articles Next Articles
Yihan LIU1(
), Yan WANG1(
), Hao MA1, Tuanjie WANG2, Cuihong DAI2
Received:2024-12-26
Revised:2025-03-03
Online:2025-08-13
Published:2025-07-25
Contact:
Yan WANG
刘翌晗1(
), 王艳1(
), 马浩1, 王团结2, 戴翠红2
通讯作者:
王艳
作者简介:刘翌晗(2001—),男,硕士研究生,6231913033@stu.jiangnan.edu.cn
基金资助:CLC Number:
Yihan LIU, Yan WANG, Hao MA, Tuanjie WANG, Cuihong DAI. A BiLSTM-based soft sensing modeling method with distributed nonlinear mapping and parallel inputs[J]. CIESC Journal, 2025, 76(7): 3373-3387.
刘翌晗, 王艳, 马浩, 王团结, 戴翠红. 基于分布式非线性映射和并行输入的BiLSTM软测量建模方法[J]. 化工学报, 2025, 76(7): 3373-3387.
Add to citation manager EndNote|Ris|BibTeX
| 输入 | 变量描述 |
|---|---|
| 顶部温度 | |
| 顶部压强 | |
| 回流流量 | |
| 流向下一工艺的流量 | |
| 第6层板的温度 | |
| 底部温度A | |
| 底部温度B |
Table 1 Description of the variables for the DC
| 输入 | 变量描述 |
|---|---|
| 顶部温度 | |
| 顶部压强 | |
| 回流流量 | |
| 流向下一工艺的流量 | |
| 第6层板的温度 | |
| 底部温度A | |
| 底部温度B |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.04439 | 0.0621 | 0.887 |
| LSTM | 0.04099 | 0.0525 | 0.921 |
| BiLSTM | 0.03353 | 0.0465 | 0.938 |
| PSO-BiLSTM | 0.03172 | 0.0448 | 0.942 |
| NM-BiLSTM | 0.01867 | 0.0280 | 0.977 |
| DNMPI-BiLSTM | 0.00581 | 0.0088 | 0.997 |
Table 2 Prediction performance of six soft sensing models in the DC dataset
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.04439 | 0.0621 | 0.887 |
| LSTM | 0.04099 | 0.0525 | 0.921 |
| BiLSTM | 0.03353 | 0.0465 | 0.938 |
| PSO-BiLSTM | 0.03172 | 0.0448 | 0.942 |
| NM-BiLSTM | 0.01867 | 0.0280 | 0.977 |
| DNMPI-BiLSTM | 0.00581 | 0.0088 | 0.997 |
| 输入 | 变量描述 |
|---|---|
| MEA气体流量 | |
| MEA一次气流 | |
| MEA二次气流 | |
| SWS气体流量 | |
| SWS气流 | |
| SO2浓度 |
Table 3 Description of the variables for the SRU
| 输入 | 变量描述 |
|---|---|
| MEA气体流量 | |
| MEA一次气流 | |
| MEA二次气流 | |
| SWS气体流量 | |
| SWS气流 | |
| SO2浓度 |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.01612 | 0.0221 | 0.856 |
| LSTM | 0.01233 | 0.0178 | 0.905 |
| BiLSTM | 0.01059 | 0.0170 | 0.914 |
| PSO-BiLSTM | 0.00959 | 0.0166 | 0.918 |
| NM-BiLSTM | 0.00792 | 0.0145 | 0.938 |
| DNMPI-BiLSTM | 0.00503 | 0.0135 | 0.946 |
Table 4 Prediction performance of six different soft sensing models in the SRU dataset
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.01612 | 0.0221 | 0.856 |
| LSTM | 0.01233 | 0.0178 | 0.905 |
| BiLSTM | 0.01059 | 0.0170 | 0.914 |
| PSO-BiLSTM | 0.00959 | 0.0166 | 0.918 |
| NM-BiLSTM | 0.00792 | 0.0145 | 0.938 |
| DNMPI-BiLSTM | 0.00503 | 0.0135 | 0.946 |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.02610 | 0.0353 | 0.856 |
| LSTM | 0.02021 | 0.0282 | 0.921 |
| BiLSTM | 0.01819 | 0.0268 | 0.929 |
| PSO-BiLSTM | 0.01702 | 0.0254 | 0.936 |
| NM-BiLSTM | 0.01379 | 0.0190 | 0.964 |
| DNMPI-BiLSTM | 0.01149 | 0.0162 | 0.974 |
Table 5 Prediction performance of six soft sensing models in the extraction process of honeysuckle
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.02610 | 0.0353 | 0.856 |
| LSTM | 0.02021 | 0.0282 | 0.921 |
| BiLSTM | 0.01819 | 0.0268 | 0.929 |
| PSO-BiLSTM | 0.01702 | 0.0254 | 0.936 |
| NM-BiLSTM | 0.01379 | 0.0190 | 0.964 |
| DNMPI-BiLSTM | 0.01149 | 0.0162 | 0.974 |
| [1] | Liu C L, Wang K, Wang Y L, et al. Learning deep multimanifold structure feature representation for quality prediction with an industrial application[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5849-5858. |
| [2] | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
| [3] | 李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633. |
| Li X Y, Sui L, Ma J X, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633. | |
| [4] | 卫升, 王艳, 纪志成. 多工况生产过程下的即时学习能耗预测建模方法[J]. 系统仿真学报, 2024, 36(6): 1378-1391. |
| Wei S, Wang Y, Ji Z C. Just-in-time learning energy consumption predictive modeling method in multi-condition production process[J]. Journal of System Simulation, 2024, 36(6): 1378-1391. | |
| [5] | Burnett A C, Anderson J, Davidson K J, et al. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression[J]. Journal of Experimental Botany, 2021, 72(18): 6175-6189. |
| [6] | Kavousi-Fard A, Samet H, Marzbani F. A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting[J]. Expert Systems with Applications, 2014, 41(13): 6047-6056. |
| [7] | Babu C N, Reddy B E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J]. Applied Soft Computing, 2014, 23: 27-38. |
| [8] | Li L, Gu Z H, Xu W X, et al. Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling[J]. Energy, 2023, 272: 127015. |
| [9] | 李文华, 叶洪涛, 罗文广, 等. 基于MHSA-LSTM的软测量建模及其在化工过程中的应用[J]. 化工学报, 2024, 75(12): 4654-4665. |
| Li W H, Ye H T, Luo W G, et al. Soft sensor modeling based on MHSA-LSTM and its application in chemical process[J]. CIESC Journal, 2024, 75(12): 4654-4665. | |
| [10] | Guo Z Y, Yang C Y, Wang D S, et al. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations[J]. Process Safety and Environmental Protection, 2023, 173: 604-613. |
| [11] | Deng W, Liu H L, Xu J J, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7319-7327. |
| [12] | 杨逸俊, 王振雷, 王昕. 基于最近邻与神经网络融合模型的软测量建模方法[J]. 化工学报, 2020, 71(12): 5696-5705. |
| Yang Y J, Wang Z L, Wang X. Soft sensor modeling method based on hybrid model of nearest neighbor and neural network[J]. CIESC Journal, 2020, 71(12): 5696-5705. | |
| [13] | Feng J, Yang L T, Ren B C, et al. Tensor recurrent neural network with differential privacy[J]. IEEE Transactions on Computers, 2023, 73(3): 683-693. |
| [14] | Yu Y, Si X S, Hu C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. |
| [15] | Palangi H, Deng L, Shen Y L, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 694-707. |
| [16] | 刘光星, 马一豪. 基于LSTM-RF的电动钻机绞车齿轮箱故障诊断[J]. 振动与冲击, 2024, 43(21): 156-162, 230. |
| Liu G X, Ma Y H. Fault diagnosis of electric drill winch gearbox based on LSTM-RF[J]. Journal of Vibration and Shock, 2024, 43(21): 156-162, 230. | |
| [17] | Ren L, Dong J B, Wang X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. |
| [18] | 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. |
| Wang X, Wu J, Liu C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. | |
| [19] | Zhang X Q, Wang X, Li H Y, et al. Monthly runoff prediction based on a coupled VMD-SSA-BiLSTM model[J]. Scientific Reports, 2023, 13(1): 13149. |
| [20] | Peng S M, Zhu J C, Wu T Z, et al. Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model[J]. Energy, 2024, 298: 131345. |
| [21] | Sekhar C, Dahiya R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand[J]. Energy, 2023, 268: 126660. |
| [22] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
| Gu X R, Liu S S, Yang S Y. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model[J]. CIESC Journal, 2023, 74(3): 1205-1215. | |
| [23] | Zhu B, Chen Z S, He Y L, et al. A novel nonlinear functional expansion based PLS (FEPLS) and its soft sensor application[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 108-117. |
| [24] | 田业. 面向复杂流程工业的数据驱动软测量建模研究及应用[D]. 北京: 北京化工大学, 2023. |
| Tian Y. Research and application of data-driven soft sensor modeling for complex industrial process[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [25] | He Y L, Wang P F, Zhu Q X. Improved Bi-LSTM with distributed nonlinear extensions and parallel inputs for soft sensing[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3748-3755. |
| [26] | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166, 192. |
| Yao X, Wang X D, Zhang Y X, et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2): 161-166, 192. | |
| [27] | Peng H C, Long F H, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. |
| [28] | Dai Y, Pang J, Rui X K, et al. Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm[J]. Case Studies in Thermal Engineering, 2023, 47: 103054. |
| [29] | 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670. |
| Xu R, Liang X, Qi J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42(7): 1640-1670. | |
| [30] | An G Q, Chen L B, Tan J X, et al. Ultra-short-term wind power prediction based on PVMD-ESMA-DELM[J]. Energy Reports, 2022, 8: 8574-8588. |
| [31] | Khataei Maragheh H, Gharehchopogh F S, Majidzadeh K, et al. A new hybrid based on long short-term memory network with spotted hyena optimization algorithm for multi-label text classification[J]. Mathematics, 2022, 10(3): 488. |
| [32] | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
| [33] | Pani A K, Amin K G, Mohanta H K. Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network[J]. Alexandria Engineering Journal, 2016, 55(2): 1667-1674. |
| [34] | Fatima S A, Zabiri H, Ali Ammar Taqvi S, et al. Intelligent control of an industrial debutanizer column[J]. Chemical Engineering & Technology, 2022, 45(4): 667-677. |
| [35] | Yuan X F, Zhou J, Huang B, et al. Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3721-3730. |
| [36] | Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control Engineering Practice, 2005, 13(4):499-508. |
| [37] | Mahdy A, Shoaib A, Gamal Mohamed Ahmed M, et al. Optimization of sulfur recovery and tail gas treatment units using aspen HYSYS and MATLAB integration[J]. Egyptian Journal of Chemistry, 2023, 66(5): 303-314. |
| [38] | Fazlollahi F, Asadizadeh S, Khoshooei M A, et al. Investigating efficiency improvement in sulfur recovery unit using process simulation and numerical modeling[J]. Oil & Gas Science and Technology-Revue D'IFP Energies Nouvelles, 2021, 76: 18. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||