CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1606-1615.DOI: 10.11949/0438-1157.20200802
• Process system engineering • Previous Articles Next Articles
LIU Cong(),XIE Li(),YANG Huizhong
Received:
2020-06-22
Revised:
2020-10-18
Online:
2021-03-05
Published:
2021-03-05
Contact:
XIE Li
通讯作者:
谢莉
作者简介:
刘聪(1997—),男,硕士研究生,基金资助:
CLC Number:
LIU Cong, XIE Li, YANG Huizhong. Multi-model soft sensor development for penicillin fermentation process based on improved density peak clustering[J]. CIESC Journal, 2021, 72(3): 1606-1615.
刘聪, 谢莉, 杨慧中. 基于改进DPC的青霉素发酵过程多模型软测量建模[J]. 化工学报, 2021, 72(3): 1606-1615.
Add to citation manager EndNote|Ris|BibTeX
1 | 俞金寿. 软测量技术及其应用[J]. 自动化仪表, 2008, 29(1): 1-7. |
Yu J S. Soft sensing technology and its application[J]. Process Automation Instrumentation, 2008, 29(1): 1-7. | |
2 | Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814. |
3 | Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243. |
4 | Souza F A.A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
5 | 王强, 田学民. 基于KPCA-LSSVM的软测量建模方法[J]. 化工学报, 2011, 62(10): 2813-2817. |
Wang Q, Tian X M. Soft sensing based on KPCA and LSSVM[J]. CIESC Journal, 2011, 62(10): 2813-2817. | |
6 | 仓文涛, 杨慧中. 基于改进随机梯度Boosting算法的软测量建模[J]. 化工学报, 2017, 68(3): 970-975. |
Cang W T, Yang H Z. Soft sensor modelling method based on modified stochastic gradient Boosting algorithm[J]. CIESC Journal, 2017, 68(3): 970-975. | |
7 | Cao P F, Luo X L. Modeling for soft sensor systems and parameters updating online[J]. Journal of Process Control, 2014, 24(6): 975-990. |
8 | 王海宁, 夏陆岳, 周猛飞, 等. 过程工业软测量中的多模型融合建模方法[J]. 化工进展, 2014, 33(12): 3157-3163. |
Wang H N, Xia L Y, Zhou M F, et al. Multi-model fusion modeling method for process industries soft sensor[J]. Chemical Industry and Engineering Progress, 2014, 33( 12) : 3157-3163. | |
9 | 双翼帆, 顾幸生. 基于改进的快速搜索聚类算法和高斯过程回归的催化重整脱氯前氢气纯度多模型建模方法[J]. 化工学报, 2016, 67(3): 765-772. |
Shuang Y F, Gu X S. Multi-model soft sensor for hydrogen purity in catalytic reforming process based on improved fast search clustering algorithm and Gaussian processes regression[J]. CIESC Journal, 2016, 67(3): 765-772. | |
10 | Wang B, Yu M, Zhu X, et al. Soft-sensing method based on FDLS-SVM in marine alkaline protease fermentation process[J]. Preparative Biochemistry & Biotechnology, 2019, 49(8): 783-789. |
11 | 唐苦, 王昕, 王振雷. 基于证据合成规则的多模型软测量[J]. 控制理论与应用, 2014, 31(5): 632-637. |
Tang K, Wang X, Wang Z L. Multi-model soft sensor based on Dempster-Shafer rule[J]. Control Theory & Applications, 2014, 31(5): 632-637. | |
12 | 梅从立, 杨铭, 刘国海. 基于证据合成的高斯过程回归多模型软测量方法[J]. 化工学报, 2015, 66(11): 4555-4564. |
Mei C L, Yang M, Liu G H. A multi-model based soft sensor using evidence theory and Gaussian process regression[J]. CIESC Journal, 2015, 66(11): 4555-4564. | |
13 | 王振雷, 唐苦, 王昕. 一种基于D-S和ARIMA的多模型软测量方法[J]. 控制与决策, 2014, 29(7): 1160-1166. |
Wang Z L, Tang K, Wang X. A multi-model soft sensing method based on D-S and ARIMA model[J]. Control & Decision, 2014, 29(7): 1160-1166. | |
14 | 杨慧中, 董陶, 陶洪峰. 基于改进k-means聚类算法的组合模型建模[J]. 控制工程, 2013, 20(2): 201-203. |
Yang H Z, Dong T, Tao H F. Combination model based on improved k-means clustering algorithm[J]. Control Engineering of China, 2013, 20(2): 201-203. | |
15 | Shahrivari S, Jalili S. Single-pass and linear-time k-means clustering based on MapReduce[J]. Information Systems, 2016, 60: 1-12. |
16 | Bryant A C, Cios K J. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1109-1121. |
17 | 李丽娟, 潘磊, 张湜. 基于AP聚类算法的跳汰机床层松散度软测量建模[J]. 化工学报, 2012, 63(9): 2675-2680. |
Li L J, Pan L, Zhang S. Soft sensor modelling for mobility of jig bed based on AP-clustering algorithm[J]. CIESC Journal, 2012, 63(9): 2675-2680. | |
18 | 熊伟丽, 葛祥振, 徐保国. 基于改进仿射传播的多模型软测量建模及应用研究[J]. 信息与控制, 2018, 47(2): 239-246. |
Xiong W L, Ge X Z, Xu B G. Multi-model soft sensor modeling and its application based on improved affinity propagation algorithm[J]. Information and Control, 2018, 47(2): 239-246. | |
19 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
20 | 王海艳, 肖亦康. 基于密度峰值聚类的动态群组发现方法[J]. 计算机研究与发展, 2018, 55(2): 391-399. |
Wang H Y, Xiao Y K. Dynamic group discovery based on density peaks clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. | |
21 | 范虹, 张程程, 侯存存, 等. 结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割[J]. 电子学报, 2019, 47(10): 2149-2157. |
Fan H, Zhang C C, Hou C C, et al. Dual-tree complex wavelet transform and improved density peak fast search and clustering method for breast MR image segmentation[J]. Acta Electronica Sinica, 2019, 47(10): 2149-2157. | |
22 | 王飞宇, 胡志祥, 黄潇. 基于密度峰值聚类算法的模态参数识别[J]. 振动与冲击, 2019, 38(2): 172-178. |
Wang F Y, Hu Z X, Huang X. Modal parameters identification using the density peaks clustering algorithm[J]. Journal of Vibration and Shock, 2019, 38(2): 172-178. | |
23 | Liu R, Wang H, Yu X M. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226. |
24 | Du M J, Ding S F, Jia H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016, 99: 135-145. |
25 | 鲍舒婷, 孙丽萍, 郑孝遥, 等. 基于共享近邻相似度的密度峰聚类算法[J]. 计算机应用, 2018, 38(6): 1601-1607. |
Bao S T, Sun L P, Zheng X Y, et al. Density peaks clustering algorithm based on shared near neighbors similarity[J]. Journal of Computer Applications, 2018, 38(6): 1601-1607. | |
26 | 王雅琳, 陈斌, 王晓丽, 等. 基于密度调整的改进自适应谱聚类算法[J]. 控制与决策, 2014, 29(9): 1683-1687. |
Wang Y L, Chen B, Wang X L, et al. Improved adaptive spectral clustering algorithm based on density adjustment[J]. Control and Decision, 2014, 29(9): 1683-1687. | |
27 | 赵彦涛, 单泽宇, 常跃进, 等. 基于MI-LSSVM的水泥生料细度软测量建模[J]. 仪器仪表学报, 2017, 38(2): 487-496. |
Zhao Y Z, Shan Z Y, Chang Y J, et al. Soft sensor modeling for cement fineness based on least squares support vector machine and mutual information[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 487-496. | |
28 | 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42. |
Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42. | |
29 | 李丽娟, 宋坤, 赵英凯. 基于仿射传播聚类的ARA发酵过程建模[J]. 化工学报, 2011, 62(8): 2116-2121. |
Li L J, Song K, Zhao Y K. Modeling of ARA fermentation based on affinity propagation clustering[J]. CIESC Journal, 2011, 62(8): 2116-2121. | |
30 | Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. |
31 | Steinley D. K-means clustering: a half-century synthesis[J]. British Journal of Mathematical and Statistical Psychology, 2006, 59(1): 1-34. |
32 | Zelnik-Manor L, Perona P. Self-tuning spectral clustering[J]. Advances in Neural Information Processing Systems, 2004, 17: 1601-1608. |
33 | Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
34 | Gopakumar V, Tiwari S, Rahman I. A deep learning based data driven soft sensor for bioprocesses[J]. Biochemical Engineering Journal, 2018, 136: 28-39. |
35 | Yuan X F, Ge Z Q, Song Z H. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 97-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||