CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3753-3771.DOI: 10.11949/0438-1157.20250058

• Reviews and monographs •     Next Articles

Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies

Yufeng WANG1(), Xiaoxue LUO1(), Hongliang FAN1, Baijing WU1, Cunpu LI1,2(), Zidong WEI1,2()   

  1. 1.State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    2.Suining Lithium Battery Research Institute of Chongqing University(SLiBaC), Chongqing University, Suining 629000, Sichuan, China
  • Received:2025-01-14 Revised:2025-03-11 Online:2025-09-17 Published:2025-08-25
  • Contact: Cunpu LI, Zidong WEI

耦合电解水制氢的绿色有机电合成——电极界面调控策略综述

王御风1(), 罗小雪1(), 范鸿亮1, 吴白婧1, 李存璞1,2(), 魏子栋1,2()   

  1. 1.重庆大学化学化工学院,特种化学电源全国重点实验室,重庆 400044
    2.重庆大学锂电及新材料遂宁研究院,四川 遂宁 629000
  • 通讯作者: 李存璞,魏子栋
  • 作者简介:王御风(2000—),男,硕士研究生,30406870@qq.com
    罗小雪(1998—),女,博士研究生,20165463@cqu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFC2105904);国家自然科学基金项目(22478043);国家自然科学基金项目(22090030);国家自然科学基金项目(U21A20312);国家自然科学基金项目(22075033)

Abstract:

With the increasing global energy crisis and environmental pollution, water electrolysis for hydrogen production has attracted much attention as a clean and efficient hydrogen production technology. However, the traditional oxygen evolution reaction (OER) at the anode faces challenges such as slow reaction kinetics, high energy loss, and the generation of low-value oxygen. Recent studies have shown that utilizing reactive oxygen species (ROS) (*OOH, *OH, *O, etc.) generated during electrolysis for selective organic oxidation can improve energy efficiency, reduce costs, and produce valuable chemicals along with hydrogen. The electrode surface plays a key role in controlling the efficiency and selectivity of this process. Factors such as electrode material structure and its interaction with organic molecules strongly influence the reaction. This review discusses strategies to modify electrode surfaces for improving organic oxidation driven by ROS during water electrolysis. Three main aspects are emphasized: improving the interaction between the electrode and organic molecules, controlling charge and mass transfer, and adjusting reaction pathways through electrode design. Modification methods such as doping and strain engineering modulate the electronic properties of electrodes, thereby enhancing ROS generation and organic adsorption, which improves reaction selectivity and efficiency. In addition, electrochemical techniques like constant potential and stepped potential control can adjust metal oxidation states and electron transfer, further optimizing reaction performance. Introducing mediators or additives, using bifunctional catalysts, and applying surface intercalation strategies can also help regulate ROS behavior on the electrode surface and tune organic molecule adsorption. Future efforts should prioritize atomic-level control of electrode surfaces and mechanistic exploration of interfacial dynamics, which are critical for scalable coupling of hydrogen production with organic electrosynthesis. Cross-disciplinary integration of operand characterization and machine learning will accelerate the inverse design of catalysts with tailored ROS-substrate adsorption, ultimately bridging fundamental discoveries to sustainable chemical manufacturing.

Key words: reactive oxygen species (ROS), organic electrosynthesis, interface control, electrolytic water, electrode material, electronic material, electrochemistry, hydrogen production

摘要:

随着全球能源危机和环境污染问题日益加剧,电解水制氢作为一种清洁、高效的制氢技术备受关注。然而,传统电解水阳极析氧反应存在动力学迟缓、过电位高以及氧气副产物等问题,限制了技术的进一步发展。近年来,研究人员发展了利用电解水阳极生成的活性氧物种(ROS)(*OOH、*OH和*O等)实现有机物选择性氧化的系列策略,可以有效提升电解水的能量、原子利用率,减少能耗,提升生产附加值。电极界面作为电化学反应的场所,电极材料的多尺度结构、反应底物的吸附行为等,都影响着耦合电解水制氢的绿色有机氧化效率和选择性。因此,本文综述了利用活性氧物种氧化有机物耦合电解水制氢的电极表面调控策略,重点讨论了电极强化“界面-底物”过程的作用、电极控制荷质传递过程以及电极调控反应作用机理等三个方面。通过掺杂、构筑应变、引入空位和异质结等手段调控电极电子结构,能够促进ROS生成和反应底物吸附,提升反应选择性与效率;通过采用恒电位和脉冲电解等多种电化学方法,可以调控电极材料的金属价态和电子传递速率,优化反应动力学;通过引入介体或添加剂、开发双效催化剂以及表面插层等手段,可以有效调控电极表面对ROS的吸附与利用,同时调节电极对反应底物的吸附特性。未来研究将集中于电极表面催化形态精准调控、催化剂活性位点优化以及机理研究,推动电解水制氢与绿色有机电化学合成的协同发展,为新能源和绿色化学的应用提供新思路。

关键词: 活性氧物种(ROS), 有机电合成, 界面调控, 电解水, 电极材料, 电子材料, 电化学, 制氢

CLC Number: