CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2419-2433.DOI: 10.11949/0438-1157.20241449
• Reviews and monographs • Previous Articles Next Articles
Haiyan JI1,2(
), Jiayin LIU3, Haijun WU1,2, Jinglin HE1,2, Ziheng JIN2(
), Dianhang WEI1,2, Xia JIANG2
Received:2024-12-16
Revised:2025-03-04
Online:2025-07-09
Published:2025-06-25
Contact:
Ziheng JIN
姬海燕1,2(
), 刘家印3, 吴海军1,2, 何璟琳1,2, 靳紫恒2(
), 魏钿航1,2, 江霞2
通讯作者:
靳紫恒
作者简介:姬海燕(1995—),女,博士研究生,2357863545@qq.com
基金资助:CLC Number:
Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen[J]. CIESC Journal, 2025, 76(6): 2419-2433.
姬海燕, 刘家印, 吴海军, 何璟琳, 靳紫恒, 魏钿航, 江霞. 低温等离子体在生物质气化制氢中的应用研究进展[J]. 化工学报, 2025, 76(6): 2419-2433.
Add to citation manager EndNote|Ris|BibTeX
| 反应类型 | 化学反应式 | 序号 |
|---|---|---|
| 氧化反应 | C+O2 CO2 | (1) |
2C+O2 2CO | (2) | |
2CO+O2 2CO2 | (3) | |
2H2+O2 2H2O | (4) | |
CH4+2O2 CO2+2H2O2 | (5) | |
| 还原反应 | C+CO2 2CO | (6) |
H2O+C CO+H2 | (7) | |
2H2O+C CO2+2H2 | (8) | |
H2O+CO CO2+H2 | (9) | |
3H2+CO CH4+H2O | (10) | |
| Boudouard反应 | 2CO C+CO2 | (11) |
| 焦油分解 | C x H y (tar) y/2H2+xC | (12) |
| 焦油水汽催化重整 | C x H y (tar)+xCO2 xCO+y/2H2 | (13) |
C x H y (tar)+xH2O xCO+(x+y/2)H2 | (14) | |
C x H y (tar)+2xH2O xCO2+(x+y/2)H2 | (15) | |
| 水蒸气重整 | C x H y O z +(x-z)H2O xCO+(x+y/2-z)H2 | (16) |
| CO2重整 | C x H y O z +(x-z)CO2 (2x-z)CO+y/2H2 | (17) |
| 部分氧化重整 | C x H y O z +(x/2-z/2)O2 xCO+y/2H2 | (18) |
Table 1 Main reaction types of biomass steam reforming process
| 反应类型 | 化学反应式 | 序号 |
|---|---|---|
| 氧化反应 | C+O2 CO2 | (1) |
2C+O2 2CO | (2) | |
2CO+O2 2CO2 | (3) | |
2H2+O2 2H2O | (4) | |
CH4+2O2 CO2+2H2O2 | (5) | |
| 还原反应 | C+CO2 2CO | (6) |
H2O+C CO+H2 | (7) | |
2H2O+C CO2+2H2 | (8) | |
H2O+CO CO2+H2 | (9) | |
3H2+CO CH4+H2O | (10) | |
| Boudouard反应 | 2CO C+CO2 | (11) |
| 焦油分解 | C x H y (tar) y/2H2+xC | (12) |
| 焦油水汽催化重整 | C x H y (tar)+xCO2 xCO+y/2H2 | (13) |
C x H y (tar)+xH2O xCO+(x+y/2)H2 | (14) | |
C x H y (tar)+2xH2O xCO2+(x+y/2)H2 | (15) | |
| 水蒸气重整 | C x H y O z +(x-z)H2O xCO+(x+y/2-z)H2 | (16) |
| CO2重整 | C x H y O z +(x-z)CO2 (2x-z)CO+y/2H2 | (17) |
| 部分氧化重整 | C x H y O z +(x/2-z/2)O2 xCO+y/2H2 | (18) |
Fig.3 (a) Dry reforming of methane induced by thermal plasma under non-catalytic conditions[59]; (b) Schematic diagram of plasma-catalytic assisted oxidative methane reforming processes; (c) Plasma-catalyst synergy and reaction pathways in plasma catalysis[29]
| 原料 | 处理工艺 | 重整温度/℃ | 催化剂/助剂 | 产气量/(mmol/g) | 合成气/%(体积) | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| Syngas | H2 | H2 | CO | |||||
| 木材/城市生活垃圾 | MSW等离子体气化 | 2227~2527 | 甘油 | 63.00 | 29.10 | 29.1~45.2 | 21~26.3 | [ |
| 不同藻类 | MSW等离子体气化 | 2227~2527 | — | — | 25.3 | — | — | [ |
| 纤维素 | 热解-DBD | 550,250 | Ni-Co/Al2O3 | 54.65 | 26.60 | 55.71 | 42.85 | [ |
| 化石燃料 | DBD催化 | 400 | Fe2O3/ LaSrFeO3 | — | — | 9.42 | — | [ |
| CH4 | DBD催化 | 400 | Fe2O3 | — | 10.00 | 68.00 | 8.00 | [ |
| SrFeO3-δ | — | 5.00 | 37.00 | 6.00 | ||||
| NiO/Fe2O3 | — | 54.00 | 84.00 | 16.00 | ||||
| NiO/SrFeO3- δ | — | 28.00 | 53.00 | 10.00 | ||||
| 甲苯 | DBD催化 | 约200 | NiFe/(Mg, Al)O x | — | — | — | — | [ |
| 甲苯 | DBD催化 | 600~800 | Mn-MOF-74 | — | — | — | — | [ |
| CeO2/13X | — | — | — | — | [ | |||
Table 2 Low temperature plasma coordination catalytic applications and product differences
| 原料 | 处理工艺 | 重整温度/℃ | 催化剂/助剂 | 产气量/(mmol/g) | 合成气/%(体积) | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| Syngas | H2 | H2 | CO | |||||
| 木材/城市生活垃圾 | MSW等离子体气化 | 2227~2527 | 甘油 | 63.00 | 29.10 | 29.1~45.2 | 21~26.3 | [ |
| 不同藻类 | MSW等离子体气化 | 2227~2527 | — | — | 25.3 | — | — | [ |
| 纤维素 | 热解-DBD | 550,250 | Ni-Co/Al2O3 | 54.65 | 26.60 | 55.71 | 42.85 | [ |
| 化石燃料 | DBD催化 | 400 | Fe2O3/ LaSrFeO3 | — | — | 9.42 | — | [ |
| CH4 | DBD催化 | 400 | Fe2O3 | — | 10.00 | 68.00 | 8.00 | [ |
| SrFeO3-δ | — | 5.00 | 37.00 | 6.00 | ||||
| NiO/Fe2O3 | — | 54.00 | 84.00 | 16.00 | ||||
| NiO/SrFeO3- δ | — | 28.00 | 53.00 | 10.00 | ||||
| 甲苯 | DBD催化 | 约200 | NiFe/(Mg, Al)O x | — | — | — | — | [ |
| 甲苯 | DBD催化 | 600~800 | Mn-MOF-74 | — | — | — | — | [ |
| CeO2/13X | — | — | — | — | [ | |||
Fig.5 (a) Interaction between low temperature plasma and catalysts[70]; (b) Supposed reaction mechanism of benzene steam reforming over NTP alone and NTP-catalytic system[71]
Fig.6 (a) General mechanism for benzene decomposition[67]; (b) Proposed reaction pathway of plasma-catalytic CO2 reforming of toluene reaction over LDH-derived Ni-Fe/(Mg, Al)O x[27]
| 序号 | 国家和地区 | 项目方 | 技术原理 | 垃圾种类 | 产氢效率 | 进展及规模 |
|---|---|---|---|---|---|---|
| 1 | 加拿大 | PyroGenesis 公司 | 等离子体制氢 | 垃圾 | — | 技术研发 |
| 2 | 加拿大渥太华 | OMNI C | 气化和等离子体精炼系统 | 垃圾 | 产生约5000 t负碳氢/a | 200 t/d(67000 t/a) |
| 3 | 美国 | Solena Group 旗下分公司SGH2 | 等离子增强气化 (SPEG) | 垃圾 | 11 t/d 3800 t/a | 每年将能够生产约3800 t氢气,处理42000 t垃圾 |
| 4 | 美国 | 西屋 | 等离子体气化 | 垃圾 | 48 t/d | 在运营 |
| 5 | 卢森堡 | Boson Energy | 等离子体气化 | 垃圾 | 100 kg/t | 研发阶段 |
| 6 | 美国 | startech | 等离子体 | 城市垃圾 | — | 日处理2000 t垃圾 |
| 7 | 中国 | 东方电气集团有限公司 | 等离子体气化 | 城市固废 | — | 1600 t/d |
Table 3 Scale and progress of plasma hydrogen demonstration equipment at home and abroad
| 序号 | 国家和地区 | 项目方 | 技术原理 | 垃圾种类 | 产氢效率 | 进展及规模 |
|---|---|---|---|---|---|---|
| 1 | 加拿大 | PyroGenesis 公司 | 等离子体制氢 | 垃圾 | — | 技术研发 |
| 2 | 加拿大渥太华 | OMNI C | 气化和等离子体精炼系统 | 垃圾 | 产生约5000 t负碳氢/a | 200 t/d(67000 t/a) |
| 3 | 美国 | Solena Group 旗下分公司SGH2 | 等离子增强气化 (SPEG) | 垃圾 | 11 t/d 3800 t/a | 每年将能够生产约3800 t氢气,处理42000 t垃圾 |
| 4 | 美国 | 西屋 | 等离子体气化 | 垃圾 | 48 t/d | 在运营 |
| 5 | 卢森堡 | Boson Energy | 等离子体气化 | 垃圾 | 100 kg/t | 研发阶段 |
| 6 | 美国 | startech | 等离子体 | 城市垃圾 | — | 日处理2000 t垃圾 |
| 7 | 中国 | 东方电气集团有限公司 | 等离子体气化 | 城市固废 | — | 1600 t/d |
Fig.7 (a) Plasma gasification and refining system; (b) Hydrogen production by plasma pyrolysis. Schematic representation of hydrogen production via plasma pyrolysis and renewable electricity and of its storage and transport and utilization (LOHC, liquid organic hydrogen carrier)[73]
| [1] | Zhang K, Kim W J, Park A A. Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential[J]. Nature Communications, 2020, 11(1): 3783. |
| [2] | Budhraja N, Pal A, Mishra R S. Plasma reforming for hydrogen production: pathways, reactors and storage[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2467-2482. |
| [3] | Kim S H, Kumar G, Chen W H, et al. Renewable hydrogen production from biomass and wastes (ReBioH2-2020)[J]. Bioresource Technology, 2021, 331: 125024. |
| [4] | Zhao W J. China's goal of achieving carbon neutrality before 2060: experts explain how[J]. National Science Review, 2022, 9(8): nwac115. |
| [5] | Kang Y Q, Cretu O, Kikkawa J, et al. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites[J]. Nature Communications, 2023, 14(1): 4182. |
| [6] | Wan C, Li G, Wang J P, et al. Modulating electronic metal-support interactions to boost visible-light-driven hydrolysis of ammonia borane: nickel-platinum nanoparticles supported on phosphorus-doped titania[J]. Angewandte Chemie International Edition, 2023, 62(40): e202305371. |
| [7] | Wang Y J, Huang L, Zhang T Y, et al. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts[J]. Fuel, 2022, 313: 123006. |
| [8] | Dai H C, Dai H M. Green hydrogen production based on the co-combustion of wood biomass and porous media[J]. Applied Energy, 2022, 324: 119779. |
| [9] | Chang Y J, Chang J S, Lee D J. Gasification of biomass for syngas production: research update and stoichiometry diagram presentation[J]. Bioresource Technology, 2023, 387: 129535. |
| [10] | 严宗诚, 陈砺,王红林. 液下辉光放电等离子体重整低碳醇水溶液制氢[J]. 化工学报, 2006, 57(6): 1432-1437. |
| Yan Z C, Chen L, Wang H L. Hydrogen generation from reforming of lower alcohols aqueous solution by glow discharge plasma under liquid[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6): 1432-1437. | |
| [11] | Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260. |
| [12] | Song Y T, Zou X L, Gong X Z, et al. Realization of thousand-second improved confinement plasma with Super I-mode in Tokamak EAST[J]. Science Advances, 2023, 9(1): eabq5273. |
| [13] | Tanaka Y. Recent development of new inductively coupled thermal plasmas for materials processing[J]. Advances in Physics: X, 2021, 6(1): 1867637. |
| [14] | Wu Z L, Hao X D, Zhou W L, et al. N-pentane activation and products formation in a temperature-controlled dielectric barrier discharge reactor[J]. Plasma Sources Science and Technology, 2018, 27(11): 115002. |
| [15] | Wanten B, Maerivoet S, Vantomme C, et al. Dry reforming of methane in an atmospheric pressure glow discharge: confining the plasma to expand the performance[J]. Journal of CO2 Utilization, 2022, 56: 101869. |
| [16] | Phuong Pham T T, Ro K S, Chen L F, et al. Microwave-assisted dry reforming of methane for syngas production: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 1987-2019. |
| [17] | Zhang X H, Wang Z W, Wu H M, et al. Propulsive effect of microwave-induced plasma jet on spark ignition of CO2-diluted CH4-air mixture[J]. Combustion and Flame, 2021, 229: 111400. |
| [18] | Gautam R, Kumar S, Upadhyayula S. A comprehensive review on recent breakthroughs in hydrogen production from hydrogen sulfide decomposition: harnessing the power of plasma[J]. Renewable and Sustainable Energy Reviews, 2024, 202: 114735. |
| [19] | 丁天英, 刘景林, 赵天亮, 等. 非热等离子体烃类燃料氧化重整反应器的研究进展[J]. 化工学报, 2015, 66(3):872-879. |
| Ding T Y, Liu J L, Zhao T L, et al. Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel[J]. CIESC Journal, 2015, 66(3): 872-879. | |
| [20] | 王军锋, 张俊杰, 张伟, 等. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
| Wang J F, Zhang J J, Zhang W, et al. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration[J]. CIESC Journal, 2024, 75(9): 3277-3286. | |
| [21] | Vadikkeettil Y, Subramaniam Y, Murugan R, et al. Plasma assisted decomposition and reforming of greenhouse gases: a review of current status and emerging trends[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112343. |
| [22] | Shao S S, Ye Z A, Sun J Y, et al. A review on the application of non-thermal plasma (NTP) in the conversion of biomass: catalyst preparation, thermal utilization and catalyst regeneration[J]. Fuel, 2022, 330: 125420. |
| [23] | Wei R R, Yin K X, Zhang R Q, et al. Techno-economic and thermodynamic analysis of hydrogen production process via plasma co-gasification of coal and biomass[J]. Energy, 2025, 314: 134241. |
| [24] | Wang W T, Ma Y, Chen G X, et al. Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process[J]. Fuel Processing Technology, 2022, 234: 107333. |
| [25] | Elhambakhsh A, Van Duc Long N, Lamichhane P, et al. Recent progress and future directions in plasma-assisted biomass conversion to hydrogen[J]. Renewable Energy, 2023, 218: 119307. |
| [26] | Zheng Y Y, Marek E J, Scott S A. H2 production from a plasma-assisted chemical looping system from the partial oxidation of CH4 at mild temperatures[J]. Chemical Engineering Journal, 2020, 379: 122197. |
| [27] | Liu L N, Dai J, Das S, et al. Plasma-catalytic CO2 reforming of toluene over hydrotalcite-derived NiFe/(Mg, Al)O x Catalysts[J]. JACS Au, 2023, 3(3): 785-800. |
| [28] | 王群, 臧鑫芝, 孙慧慧, 等. Mn基金属有机骨架(MOFs)催化剂制备及介质阻挡放电(DBD)等离子体协同催化降解甲苯[J]. 环境化学, 2023, 42(11): 3767-3778. |
| Wang Q, Zang X Z, Sun H H, et al. Preparation of Mn-based metal-organic frameworks (MOFs) catalysts and its synergistic catalysis on toluene degradation with dielectric barrier discharge (DBD) plasma[J]. Environmental Chemistry, 2023, 42(11): 3767-3778. | |
| [29] | Wang N, Otor H O, Rivera-Castro G, et al. Plasma catalysis for hydrogen production: a bright future for decarbonization[J]. ACS Catalysis, 2024, 14(9): 6749-6798. |
| [30] | Yang G, Hu Q, Hu J H, et al. Hydrogen-rich syngas production from biomass gasification using biochar-based nanocatalysts[J]. Bioresource Technology, 2023, 379: 129005. |
| [31] | Mishra K, Singh Siwal S, Kumar Saini A, et al. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production[J]. Fuel, 2023, 332: 126169. |
| [32] | 刘昊霖. 生物质气化制氢过程中的焦油脱除研究[D]. 杭州: 浙江科技学院, 2021. |
| Liu H L. Study on tar removal in hydrogen production from biomass gasification[D]. Hangzhou: Zhejiang University of Science & Technology, 2021. | |
| [33] | Bridgwater A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003, 91(2/3): 87-102. |
| [34] | Zhang L H, Xu C B, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51(5): 969-982. |
| [35] | Ren J, Cao J P, Zhao X Y, et al. Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109426. |
| [36] | Ashok J, Dewangan N, Das S, et al. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction[J]. Fuel Processing Technology, 2020, 199: 106252. |
| [37] | Gao N B, Salisu J, Quan C, et al. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111023. |
| [38] | Qin T, Yuan S F. Research progress of catalysts for catalytic steam reforming of high temperature tar: a review[J]. Fuel, 2023, 331: 125790. |
| [39] | Plis P, Wilk R K. Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier[J]. Energy, 2011, 36(6): 3838-3845. |
| [40] | Meng X M, de Jong W, Fu N J, et al. Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: effects of operational conditions on product gas distribution and tar formation[J]. Biomass and Bioenergy, 2011, 35(7): 2910-2924. |
| [41] | Rapagnà S, Jand N, Kiennemann A, et al. Steam-gasification of biomass in a fluidised-bed of olivine particles[J]. Biomass and Bioenergy, 2000, 19(3): 187-197. |
| [42] | Kong G, Zhang X, Wang K J, et al. Coupling biomass gasification and inline co-steam reforming: synergistic effect on promotion of hydrogen production and tar removal[J]. Fuel Processing Technology, 2023, 243: 107689. |
| [43] | Liu H B, Chen T H, Zhang X L, et al. Effect of additives on catalytic cracking of biomass gasification tar over a nickel-based catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4): 409-414. |
| [44] | Wu C F, Dupont V, Nahil M A, et al. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming[J]. Journal of the Energy Institute, 2017, 90(2): 276-284. |
| [45] | Zhang R Q, Wang Y C, Brown R C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2 [J]. Energy Conversion and Management, 2007, 48(1): 68-77. |
| [46] | Mukai D, Murai Y, Higo T, et al. Effect of Pt addition to Ni/La0.7Sr0.3AlO3- δ catalyst on steam reforming of toluene for hydrogen production[J]. Applied Catalysis A: General, 2014, 471: 157-164. |
| [68] | Wnukowski M, Jamróz P. Microwave plasma treatment of simulated biomass syngas: interactions between the permanent syngas compounds and their influence on the model tar compound conversion[J]. Fuel Processing Technology, 2018, 173: 229-242. |
| [69] | Favas J, Monteiro E, Rouboa A. Hydrogen production using plasma gasification with steam injection[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10997-11005. |
| [70] | Xu J Q, Xia P, Zhang Q, et al. Coke resistance of Ni-based catalysts enhanced by cold plasma treatment for CH4-CO2 reforming: review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23174-23189. |
| [71] | Pan W, Meng J G, Gu T T, et al. Plasma-catalytic steam reforming of benzene as a tar model compound over Ni-HAP and Ni-γAl2O3 catalysts: insights into the importance of steam and catalyst support[J]. Fuel, 2023, 339: 127327. |
| [72] | Liang W J, Ma L, Liu H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst[J]. Chemosphere, 2013, 92(10): 1390-1395. |
| [73] | Chen G X, Tu X, Homm G, et al. Plasma pyrolysis for a sustainable hydrogen economy[J]. Nature Reviews Materials, 2022, 7: 333-334. |
| [47] | Oemar U, Ang M L, Hee W F, et al. Perovskite La x M1- x Ni0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition[J]. Applied Catalysis B: Environmental, 2014, 148: 231-242. |
| [48] | 孙成伟, 沈洁, 任雪梅, 等. 等离子气化技术用于固体废物处理的研究进展[J]. 物理学报, 2021, 70(9): 72-85. |
| Sun C W, Shen J, Ren X M, et al. Research progress of plasma gasification technology for solid waste treatment[J]. Acta Physica Sinica, 2021, 70(9): 72-85. | |
| [49] | Du C M, Mo J M, Li H X. Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: challenges and opportunities[J]. Chemical Reviews, 2015, 115(3): 1503-1542. |
| [50] | Aleknaviciute I, Karayiannis T G, Collins M W, et al. Methane decomposition under a corona discharge to generate CO x -free hydrogen[J]. Energy, 2013, 59: 432-439. |
| [51] | Zhu X B, Gao X, Qin R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B: Environmental, 2015, 170: 293-300. |
| [52] | Guo Y F, Ye D Q, Chen K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 2007, 126(3/4): 328-337. |
| [53] | Wang T, Chen S, Wang H Q, et al. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017, 38(5): 793-803. |
| [54] | Liu L N, Wang Q, Ahmad S, et al. Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system[J]. Journal of the Energy Institute, 2018, 91(6): 927-939. |
| [55] | Zeng Y X, Zhu X B, Mei D H, et al. Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts[J]. Catalysis Today, 2015, 256: 80-87. |
| [56] | Huang X Y, Cheng D G, Chen F Q, et al. Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study[J]. Renewable Energy, 2016, 96: 490-497. |
| [57] | Qi H Q, Xu H W, Zhang J F, et al. Thermodynamic and techno-economic analyses of hydrogen production from different algae biomass by plasma gasification[J]. International Journal of Hydrogen Energy, 2023, 48(92): 35895-35906. |
| [58] | 石秀娟, 梁文俊, 尹国彬, 等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483. |
| Shi X J, Liang W J, Yin G B, et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst[J]. CIESC Journal, 2022, 73(10): 4472-4483. | |
| [59] | Zhou Y, Chu R Z, Fan L L, et al. Conversion mechanism of thermal plasma-enhanced CH4-CO2 reforming system to syngas under the non-catalytic conditions[J]. Science of the Total Environment, 2023, 866: 161453. |
| [60] | Neyts E C, Ostrikov K K, Sunkara M K, et al. Plasma catalysis: synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. |
| [61] | Indrawan N, Mohammad S, Kumar A, et al. Modeling low temperature plasma gasification of municipal solid waste[J]. Environmental Technology & Innovation, 2019, 15: 100412. |
| [62] | Tamošiūnas A, Valatkevičius P, Valinčius V, et al. Biomass conversion to hydrogen-rich synthesis fuels using water steam plasma[J]. Comptes Rendus Chimie, 2016, 19(4): 433-440. |
| [63] | Wang C, Liu T, Xiao R, et al. High-purity hydrogen obtained via a plasma-assisted chemical looping process using perovskite-supported iron oxides as oxygen carriers[J]. Energy & Fuels, 2023, 37(18): 14141-14149. |
| [64] | Tamošiūnas A, Gimžauskaitė D, Aikas M, et al. Biomass gasification to syngas in thermal water vapor arc discharge plasma[J]. Biomass Conversion and Biorefinery, 2023, 13(18): 16373-16384. |
| [65] | 余淼霏, 杜胜男, 米俊锋, 等. 低温等离子体协同催化处理VOCs的研究进展[J]. 环境工程, 2022, 40(8): 213-219, 212. |
| Yu M F, Du S N, Mi J F, et al. Research progress of low-temperature plasma synergistic catalytic treatment of VOCs [J]. Environmental Engineering, 2022, 40(8): 213-219, 212. | |
| [66] | 叶凯, 刘香华, 姜月, 等. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
| Ye K, Liu X H, Jiang Y, et al. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715. | |
| [67] | Saleem F, Zhang K, Harvey A P. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma[J]. Chemical Engineering Journal, 2019, 360: 714-720. |
| [1] | Biao FENG, Zhao ZHANG, Siqi LI, Bingrui WANG, Hongying WU, Miao SHI, Dan WANG, Suxia MA. Performance of flame retardant for environmentally friendly refrigerant R290 [J]. CIESC Journal, 2025, 76(S1): 462-468. |
| [2] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [3] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [4] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [5] | Pengwei LIAO, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Siyu YANG, Hao YU. Wind power hydrogen production systems considering uncertainty: multi-time scale operation strategy [J]. CIESC Journal, 2025, 76(6): 2743-2754. |
| [6] | Zhichao WANG, Dongmei LIU, Min XIONG, Li ZHOU, Xu JI, Yagu DANG. Optimization of multi-period scheduling for coupling system of hydrogen production from renewable energy and refinery hydrogen network [J]. CIESC Journal, 2025, 76(6): 2802-2812. |
| [7] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [8] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [9] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
| [10] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
| [11] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
| [12] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
| [13] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
| [14] | Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system [J]. CIESC Journal, 2025, 76(3): 1230-1242. |
| [15] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||