CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1463-1483.DOI: 10.11949/0438-1157.20241188
• Reviews and monographs • Previous Articles Next Articles
Mengqi SHI1(), Huan WANG2, Shoujuan WANG1, Yuebin XI1(
), Fangong KONG1(
)
Received:
2024-10-24
Revised:
2024-12-23
Online:
2025-05-12
Published:
2025-04-25
Contact:
Yuebin XI, Fangong KONG
石孟琪1(), 王欢2, 王守娟1, 席跃宾1(
), 孔凡功1(
)
通讯作者:
席跃宾,孔凡功
作者简介:
石孟琪(2000—),女,硕士研究生,1656461554@qq.com
基金资助:
CLC Number:
Mengqi SHI, Huan WANG, Shoujuan WANG, Yuebin XI, Fangong KONG. Research progress of lignin-based polyporous carbon in lithium-sulfur batteries[J]. CIESC Journal, 2025, 76(4): 1463-1483.
石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483.
原料 | 活化工艺 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 储能/催化/吸附性能 |
---|---|---|---|---|
酶解木质素 | K2CO3活化[ | 2300 | 1.13 | 1 A·g-1下,1000 次循环后比容量为260 mAh·g-1 |
硫酸盐木质素 | 蒸汽物理化学活化[ | 1148 | 1.0 | — |
木质素衍生物 | 水热处理和活化[ | 2218 | — | 1 A·g-1下电容为312 F·g-1 |
针叶木质素 | KOH/NaOH活化[ | 1307 | 0.74 | — |
低硫酸性木质素 | H3PO4活化[ | 2015 | 0.99 | — |
未改性木质素 | KOH活化[ | 1899.45 | 1.059 | 0.5 A·g-1下电容为217.3 F·g-1 |
碱木质素 | ZnC2O4活化[ | 1139 | 2.954 | 0.5 A·g-1下电容为254 F·g-1 |
木质素磺酸钠 | ZnCl2活化[ | 1459.3 | 0.9085 | — |
碱木质素 | KOH/NaOH活化、MgO为硬模板[ | 1962.87 | 2.17 | 0.63 V下的峰值功率密度为133 mW·cm-2 |
煤沥青 | 热解[ | — | — | 气化速率 4.5×10-1 |
核桃壳 | K2CO3活化[ | 60 | — | 0.5 A·g-1下电容为 255 F·g-1 |
稻壳 | K2CO3活化[ | 1583 | 孔径3.2 nm | 0.1 C下的初始放电容量为 1080 mAh·g-1 |
木材 | NaOH活化[ | 2909 | 1.6 | Tafel斜率分别为-90.6和-88.0 mV·dec-1 |
玉米芯 | H3PO4活化[ | — | 孔径3.35 nm | 吸收183.3 mg·g-1 MB染料 |
秸秆 | KOH活化[ | 1999.96 | — | 对H2S的吸附容量为61.47 mg·g-1 |
可溶性淀粉 | KOH活化[ | 1162 | 0.33 | 1 A·g-1下电容为 165 F·g-1 |
竹屑 | 蒸汽活化[ | 1210 | 0.542 | 单层吸附容量为330 mg·g-1 |
Table 1 Structural parameters of porous carbon obtained by different activation processes
原料 | 活化工艺 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 储能/催化/吸附性能 |
---|---|---|---|---|
酶解木质素 | K2CO3活化[ | 2300 | 1.13 | 1 A·g-1下,1000 次循环后比容量为260 mAh·g-1 |
硫酸盐木质素 | 蒸汽物理化学活化[ | 1148 | 1.0 | — |
木质素衍生物 | 水热处理和活化[ | 2218 | — | 1 A·g-1下电容为312 F·g-1 |
针叶木质素 | KOH/NaOH活化[ | 1307 | 0.74 | — |
低硫酸性木质素 | H3PO4活化[ | 2015 | 0.99 | — |
未改性木质素 | KOH活化[ | 1899.45 | 1.059 | 0.5 A·g-1下电容为217.3 F·g-1 |
碱木质素 | ZnC2O4活化[ | 1139 | 2.954 | 0.5 A·g-1下电容为254 F·g-1 |
木质素磺酸钠 | ZnCl2活化[ | 1459.3 | 0.9085 | — |
碱木质素 | KOH/NaOH活化、MgO为硬模板[ | 1962.87 | 2.17 | 0.63 V下的峰值功率密度为133 mW·cm-2 |
煤沥青 | 热解[ | — | — | 气化速率 4.5×10-1 |
核桃壳 | K2CO3活化[ | 60 | — | 0.5 A·g-1下电容为 255 F·g-1 |
稻壳 | K2CO3活化[ | 1583 | 孔径3.2 nm | 0.1 C下的初始放电容量为 1080 mAh·g-1 |
木材 | NaOH活化[ | 2909 | 1.6 | Tafel斜率分别为-90.6和-88.0 mV·dec-1 |
玉米芯 | H3PO4活化[ | — | 孔径3.35 nm | 吸收183.3 mg·g-1 MB染料 |
秸秆 | KOH活化[ | 1999.96 | — | 对H2S的吸附容量为61.47 mg·g-1 |
可溶性淀粉 | KOH活化[ | 1162 | 0.33 | 1 A·g-1下电容为 165 F·g-1 |
竹屑 | 蒸汽活化[ | 1210 | 0.542 | 单层吸附容量为330 mg·g-1 |
1 | Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823. |
2 | Zhang K L, Xia X H, Deng S J, et al. Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction[J]. Nano-Micro Letters, 2019, 11(1): 21. |
3 | Zhang Y, Xia X H, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials, 2019, 9(8): 1803342. |
4 | Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
5 | Xing Z Y, Li G R, Sy S, et al. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance[J]. Nano Energy, 2018, 54: 1-9. |
6 | Yang Y, Risse S, Mei S L, et al. Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography[J]. Energy Storage Materials, 2017, 9: 96-104. |
7 | Han J, Jang H, Thi Bui H, et al. Stable performance of Li-S battery: engineering of Li2S smart cathode by reduction of multilayer graphene-embedded 2D-MoS2 [J]. Journal of Alloys and Compounds, 2021, 862: 158031. |
8 | Wang L J, Zhang T R, Yang S Q, et al. A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2013, 22(1): 72-77. |
9 | Liu S H, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895. |
10 | Lee D J, Agostini M, Park J W, et al. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution[J]. ChemSusChem, 2013, 6(12): 2245-2248. |
11 | Zhou G M, Zhao S Y, Wang T S, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano Letters, 2020, 20(2): 1252-1261. |
12 | Liu Z X, Deng H Q, Hu W Y, et al. Revealing reaction mechanisms of nanoconfined Li2S: implications for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11713-11721. |
13 | Li Y J, Zhan H, Liu S Q, et al. Electrochemical properties of the soluble reduction products in rechargeable Li/S battery[J]. Journal of Power Sources, 2010, 195(9): 2945-2949. |
14 | Liu X B, Xiao Z C, Lai C G, et al. Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Materials Science & Technology, 2020, 48: 84-91. |
15 | Zhou Y, Candelaria S L, Liu Q, et al. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability[J]. Journal of Materials Chemistry A, 2014, 2(22): 8472-8482. |
16 | Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018, 9(1): 705. |
17 | Li H X, Ma S, Li J W, et al. Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 26: 203-212. |
18 | Wang J N, Yi S S, Liu J W, et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries[J]. ACS Nano, 2020, 14(8): 9819-9831. |
19 | Zhao S R, Li C M, Wang W K, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10): 3334-3339. |
20 | Yuan S Y, Kong T Y, Zhang Y Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions[J]. Angewandte Chemie International Edition, 2021, 60(49): 25624-25638. |
21 | Hood Z D, Wang H, Samuthira Pandian A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768-1771. |
22 | Zha C Y, Wu D H, Zhang T K, et al. A facile and effective sulfur loading method: direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery[J]. Energy Storage Materials, 2019, 17: 118-125. |
23 | Evers S, Yim T, Nazar L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19653-19658. |
24 | Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: 7436. |
25 | Brenelli L B, Mandelli F, Mercadante A Z, et al. Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity[J]. Industrial Crops and Products, 2016, 83: 94-103. |
26 | Wang H, Xiong F Q, Tan Y J, et al. Preparation and formation mechanism of covalent-noncovalent forces stabilizing lignin nanospheres and their application in superhydrophobic and carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(10): 3811-3820. |
27 | Feng P X, Wang H, Gan S Y, et al. Novel lignin-functionalized waterborne epoxy composite coatings with excellent anti-aging, UV resistance, and interfacial anti-corrosion performance[J]. Small, 2024, 20(28): e2312085. |
28 | Ponomarev N, Sillanpää M. Combined chemical-templated activation of hydrolytic lignin for producing porous carbon[J]. Industrial Crops and Products, 2019, 135: 30-38. |
29 | Ma Z H, Han Y, Qi J J, et al. High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets[J]. Industrial Crops and Products, 2021, 169: 113649. |
30 | Zhang W L, Qiu X Q, Wang C W, et al. Lignin derived carbon materials: current status and future trends[J]. Carbon Research, 2022, 1(1): 14. |
31 | Supanchaiyamat N, Jetsrisuparb K, Knijnenburg J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
32 | Meng Q W, Chen B Y, Jian W B, et al. Hard carbon anodes for sodium-ion batteries: dependence of the microstructure and performance on the molecular structure of lignin[J]. Journal of Power Sources, 2023, 581: 233475. |
33 | Zheng J Q, Wu Y L, Guan C H, et al. Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance[J]. Carbon Energy, 2024, 6(9): e538. |
34 | Zhao Z H, Hao S M, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(29): 15049-15056. |
35 | Cui J H, Zhao Z Y, Ren Y Q, et al. Excellent cycle stability of Fe loaded on N-doped activated carbon for microwave hydrogenolysis of lignin[J]. Chemical Engineering Journal, 2024, 502: 158001. |
36 | Xu J, Su D W, Zhang W X, et al. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(44): 17381-17393. |
37 | Pozio A, Di Carli M, Aurora A, et al. Hard carbons for use as electrodes in Li-S and Li-ion batteries[J]. Nanomaterials, 2022, 12(8): 1349. |
38 | Xia G, Ye J J, Zheng Z Q, et al. Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium-sulfur batteries[J]. Carbon, 2021, 172: 96-105. |
39 | Kang W M, Fan L L, Deng N P, et al. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries[J]. Chemical Engineering Journal, 2018, 333: 185-190. |
40 | Lobato-Peralta D R, Duque-Brito E, Villafán-Vidales H I, et al. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications[J]. Journal of Cleaner Production, 2021, 293: 126123. |
41 | Robertson D, Nousiainen P, Pitkänen L, et al. Carbonisation of lignin in the presence of a eutectic salt mixture: identifying the lignin properties that govern the characteristics of the resulting carbon material[J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106811. |
42 | Zhang B L, Jin Y P, Yu Y B, et al. Biochar with enhanced performance prepared from bio-regulated lignocellulose for efficient removal of organic pollutants from wastewater[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110526. |
43 | Bing R G, Sulis D B, Carey M J, et al. Beyond low lignin: identifying the primary barrier to plant biomass conversion by fermentative bacteria[J]. Science Advances, 2024, 10(42): eadq4941. |
44 | Kane S, Hodge D B, Saulnier B, et al. Role of sodium sulfate in electrical conductivity and structure of lignin-derived carbons[J]. Journal of Analytical and Applied Pyrolysis, 2024, 181: 106600. |
45 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
46 | Saha D, Li Y C, Bi Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
47 | Zhang L M, You T T, Zhou T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
48 | Yang Z, Gleisner R H, Mann D, et al. Lignin based activated carbon using H3PO4 activation[J]. Polymers, 2020, 12(12): 2829. |
49 | Li W, Wang G H, Sui W J, et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes[J]. Carbon, 2022, 196: 819-827. |
50 | Feng P X, Wang H, Huang P P, et al. Nitrogen-doped lignin-derived porous carbons for supercapacitors: effect of nanoporous structure[J]. Chemical Engineering Journal, 2023, 471: 144817. |
51 | Zhao J, Wang Q C, Zhang W J, et al. Unravelling the performance of N-doped lignin-derived carbon materials during electro-catalytic reduction of CO2 [J]. International Journal of Hydrogen Energy, 2024, 67: 127-135. |
52 | Ma Z H, Han Y, Wang X, et al. Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129818. |
53 | Byambajav E, Paysepar H, Nazari L, et al. Co-pyrolysis of lignin and low rank coal for the production of aromatic oils[J]. Fuel Processing Technology, 2018, 181: 1-7. |
54 | Xu X Y, Gao J P, Tian Q, et al. Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor[J]. Applied Surface Science, 2017, 411: 170-176. |
55 | Mai T T, Vu D L, Huynh D C, et al. Cost-effective porous carbon materials synthesized by carbonizing rice husk and K2CO3 activation and their application for lithium-sulfur batteries[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(2): 223-229. |
56 | Dobele G, Volperts A, Plavniece A, et al. Thermochemical activation of wood with NaOH, KOH and H3PO4 for the synthesis of nitrogen-doped nanoporous carbon for oxygen reduction reaction[J]. Molecules, 2024, 29(10): 2238. |
57 | Jawad A H, Bardhan M, Islam M A, et al. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation[J]. Surfaces and Interfaces, 2020, 21: 100688. |
58 | Cui S B, Zhao Y, Liu Y X, et al. Preparation of straw porous biochars by microwave-assisted KOH activation for removal of gaseous H2S[J]. Energy & Fuels, 2021, 35(22): 18592-18603. |
59 | Guo N N, Ma R, Feng P Y, et al. Soluble starch-derived porous carbon microspheres with interconnected and hierarchical structure by a low dosage KOH activation for ultrahigh rate supercapacitors[J]. International Journal of Biological Macromolecules, 2024, 262: 130254. |
60 | Zhang Y J, Xing Z J, Duan Z K, et al. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J]. Applied Surface Science, 2014, 315: 279-286. |
61 | Li T Y, Pan H, Xu L H, et al. Preparation and properties of lignin-based carbon/ZnO photocatalytic materials[J]. Journal of Porous Materials, 2022, 29(6): 1883-1893. |
62 | Lou R, Tian J, Zhang Y N, et al. Fabrication of hierarchical lignin-based carbon through direct high-temperature pyrolysis and its electrochemical application[J]. ACS Omega, 2021, 6(49): 34129-34136. |
63 | Liu H Y, Chen H S, Shi K Y, et al. Lignin-derived porous carbon for zinc-ion hybrid capacitor[J]. Industrial Crops and Products, 2022, 187: 115519. |
64 | Fu J Q, Bai L, Chi M S, et al. Study on the evolution pattern of the chemical structure of Fenton pretreated lignin during hydrothermal carbonization[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107184. |
65 | Melilli G, Adolfsson K H, Impagnatiello A, et al. Intriguing carbon flake formation during microwave-assisted hydrothermal carbonization of sodium lignosulfonate[J]. Global Challenges, 2020, 4(8): 1900111. |
66 | Wu Y, Cao J P, Zhao X Y, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2 [J]. Applied Surface Science, 2020, 508: 144536. |
67 | Shabir S, Hussain S Z, Ahmad Bhat T, et al. High carbon content microporous activated carbon from thin walnut shells: optimization, physico-chemical analysis and structural profiling[J]. Process Safety and Environmental Protection, 2024, 190: 85-96. |
68 | Zhou X Y, Li H C, Yang J. Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes[J]. Journal of Energy Chemistry, 2016, 25(1): 35-40. |
69 | Babeł K, Jurewicz K. KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption[J]. Carbon, 2008, 46(14): 1948-1956. |
70 | Gao Y, Yue Q Y, Gao B Y, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(Ⅱ) adsorption[J]. Chemical Engineering Journal, 2013, 217: 345-353. |
71 | Liu D C, Zhang W L, Liu D B, et al. Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7009-7018. |
72 | Myglovets M, Poddubnaya O I, Sevastyanova O, et al. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions[J]. Carbon, 2014, 80: 771-783. |
73 | Moulefera I, García-Mateos F J, Benyoucef A, et al. Effect of co-solution of carbon precursor and activating agent on the textural properties of highly porous activated carbon obtained by chemical activation of lignin with H3PO4 [J]. Frontiers in Materials, 2020, 7: 153. |
74 | Xiong L Y Z, Liu B W, Du L, et al. Bimetallic NiCoP catalysts anchored on phosphorus-doped lignin-based carbon for robust oxygen evolution performance[J]. Rare Metals, 2024, 43(7): 3084-3095. |
75 | Wei W Q, Wang B X, Huang X R, et al. Potassium salts activated lignin-based biochar as an effective adsorbent for malachite green adsorption[J]. International Journal of Biological Macromolecules, 2024, 277: 134209. |
76 | Wu C, Ding J, Tindall G W, et al. The role of lignin molecular weight on activated carbon pore structure[J]. Molecules, 2024, 29(16): 3879. |
77 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
78 | Ge W N, Zhou Z P, Zhang P, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
79 | Zhang B P, Yang D J, Qian Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 112773. |
80 | Zhang B P, Yang D J, Qiu X Q, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
81 | Xie A T, Dai J D, Chen Y, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30 (1): 170-179. |
82 | Li S Y, Jiang Z Y, Liu A M, et al. A porous carbon based on the surface and structural regulation of wasted lignin for long-cycle lithium-ion battery[J]. International Journal of Biological Macromolecules, 2022, 222: 1414-1422. |
83 | Sun D L, Yu X C, Ji X Q, et al. Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode[J]. Journal of Alloys and Compounds, 2019, 805: 327-337. |
84 | Bergna D, Varila T, Romar H, et al. Activated carbon from hydrolysis lignin: effect of activation method on carbon properties[J]. Biomass and Bioenergy, 2022, 159: 106387. |
85 | Pathak A D, Cha E, Choi W. Towards the commercialization of Li-S battery: from lab to industry[J]. Energy Storage Materials, 2024, 72: 103711. |
86 | Cheng J, Liu Y C, Zhang X X, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 419: 129649. |
87 | Chen Z Z, Lu M J, Qian Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): 2300092. |
88 | Liu F Y, Feng P, Yuan M, et al. Continuous preparation of a flexible carbon nanotube film from lignin as a sulfur host material for lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(46): 16544-16553. |
89 | Yeon J S, Park S H, Suk J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. |
90 | Zhang Z Y, Yi S, Wei Y J, et al. Lignin nanoparticle-coated Celgard separator for high-performance lithium-sulfur batteries[J]. Polymers, 2019, 11(12): 1946. |
91 | Jiang S X, Chen M F, Wang X Y, et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 355: 478-486. |
92 | Luo W B, He Q, Zhang C Q, et al. Lignin-based polymer networks enabled N, S co-doped defect-rich hierarchically porous carbon anode for long-cycle Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(7): 2881-2892. |
93 | Tian Y H, Yang Z Y, Wang H, et al. Nitrogen-doped 3D carbon hybrids based on modified lignin as sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2024, 621: 235322. |
94 | Liu C, Hou Y, Li Y M, et al. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 614: 566-573. |
95 | Li W, Zhang W H, Xu Y, et al. Heteroatom-doped lignin derived carbon materials with improved electrochemical performance for advanced supercapacitors[J]. Chemical Engineering Journal, 2024, 497: 154829. |
96 | Liu T, Sun S M, Song W, et al. A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23486-23494. |
97 | Qu Q, Guo J, Wang H Y, et al. Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery[J]. Electrochimica Acta, 2024, 473: 143454. |
98 | Wang J Y, Fan D Z, Zhang L Z, et al. Lignin-derived hierarchical porous carbon with high surface area and interconnected pores for efficient antibiotics adsorption[J]. Chemical Engineering Journal, 2023, 454: 139789. |
99 | Lu M J, Chen K, Jia Z Y, et al. Ion-selective gel polymer electrolyte and cathode binder derived from a shared polyether to synergistically mitigate polysulfides shuttling in lithium sulfur batteries[J]. Energy Storage Materials, 2024, 73: 103870. |
100 | Liu H Y, Xu T, Liu K, et al. Lignin-based electrodes for energy storage application[J]. Industrial Crops and Products, 2021, 165: 113425. |
[1] | Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation [J]. CIESC Journal, 2025, 76(3): 1253-1263. |
[2] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[3] | Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell [J]. CIESC Journal, 2024, 75(8): 2991-3001. |
[4] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[5] | Tianyong ZHANG, Jingyi ZHANG, Shuang JIANG, Bin LI, Dongjun LYU, Dumin CHEN, Xue CHEN. Preparation and utilization of carbon-based adsorbent from organic pollutants in waste salt during acidic blue AS dye production [J]. CIESC Journal, 2024, 75(3): 890-899. |
[6] | Xiangfei DING, Xiaolin QIU, Xicheng ZHU, Jiawei ZHANG, Jinhua CHEN. Preparation and properties of pH-responsive gas permeable CNC/PBAT composite membranes [J]. CIESC Journal, 2024, 75(3): 1040-1051. |
[7] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[8] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[9] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[13] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[14] | Haonan CHEN, Xiaohong HU, Longlong MA, Qi ZHANG. Study of typical chemical cleavage during catalytic oxidation of lignin [J]. CIESC Journal, 2023, 74(11): 4367-4382. |
[15] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||