CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6748-6760.DOI: 10.11949/0438-1157.20250463
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yuchen WANG1(
), Wanzong WANG1,3(
), Xin ZHANG1,2(
), Maoqiang GUO1, Xiaoming ZHOU1, Lizhi SHENG1
Received:2025-04-03
Revised:2025-07-11
Online:2026-01-23
Published:2025-12-31
Contact:
Xin ZHANG
王煜晨1(
), 王万宗1,3(
), 张鑫1,2(
), 郭茂强1, 周晓明1, 盛利志1
通讯作者:
张鑫
作者简介:王煜晨(1999—),男,硕士研究生,a784169301@163.com基金资助:CLC Number:
Yuchen WANG, Wanzong WANG, Xin ZHANG, Maoqiang GUO, Xiaoming ZHOU, Lizhi SHENG. Electrochemical performance of high-mass-loading porous carbons derived from catalpa pod shells[J]. CIESC Journal, 2025, 76(12): 6748-6760.
王煜晨, 王万宗, 张鑫, 郭茂强, 周晓明, 盛利志. 高负载梓树豆荚壳衍生多孔碳材料的电化学性能研究[J]. 化工学报, 2025, 76(12): 6748-6760.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 (a) CV curve of ACPSC-1∶1; (b) Functional relationship graph of charge and discharge current and scanning rate; (c) GCD curve and (d) specific capacitance of different samples at different current densities
| Sample | Rs/Ω | Rct/Ω | WO-R | WO-T | WO-P |
|---|---|---|---|---|---|
| CPSC | 0.25 | 0.203 | 0.822 | 0.048 | 0.443 |
| ACPSC-2∶1 | 0.178 | 0.096 | 0.479 | 0.053 | 0.463 |
| ACPSC-1∶1 | 0.142 | 0.046 | 0.373 | 0.039 | 0.472 |
| ACPSC-1∶2 | 0.163 | 0.059 | 0.42 | 0.049 | 0.469 |
Table 1 Impedance fitting values of CPSC and ACPSC-X series samples
| Sample | Rs/Ω | Rct/Ω | WO-R | WO-T | WO-P |
|---|---|---|---|---|---|
| CPSC | 0.25 | 0.203 | 0.822 | 0.048 | 0.443 |
| ACPSC-2∶1 | 0.178 | 0.096 | 0.479 | 0.053 | 0.463 |
| ACPSC-1∶1 | 0.142 | 0.046 | 0.373 | 0.039 | 0.472 |
| ACPSC-1∶2 | 0.163 | 0.059 | 0.42 | 0.049 | 0.469 |
Fig.10 (a) CV curve; (b) GCD curve of ACPSC-1∶1 loading at 13 mg·cm-2; (c) specific capacitance and (d) area-to-capacitance of different mass loading capacities
| 电极 | 质量负载/(mg·cm-2) | 1 A·g-1电流密度下电化学性能/(F·g-1) | 文献 |
|---|---|---|---|
| MGC-700 | 13 | 110 | [ |
| N,S co-doped carbon nanoflowers | 13 | 39 | [ |
| SL/W-2 | 13 | 122 | [ |
| ACPSC-1∶1 | 13 | 125 | — |
Table 2 Comparison of the electrochemical performance of ACPSACPSC-1∶1 with previously reported high-mass-loading electrodes
| 电极 | 质量负载/(mg·cm-2) | 1 A·g-1电流密度下电化学性能/(F·g-1) | 文献 |
|---|---|---|---|
| MGC-700 | 13 | 110 | [ |
| N,S co-doped carbon nanoflowers | 13 | 39 | [ |
| SL/W-2 | 13 | 122 | [ |
| ACPSC-1∶1 | 13 | 125 | — |
| [1] | Karlilar Pata S, Pata U K, Wang Q. Ecological power of energy storage, clean fuel innovation, and energy-related research and development technologies[J]. Renewable Energy, 2025, 241: 122377. |
| [2] | An T C, Cheng W L. Recent progress in stretchable supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(32): 15478-15494. |
| [3] | 钱宇宸, 杨晓晓, 张晶晶, 等. 超级电容器电极材料的研究进展[J]. 东华大学学报(自然科学版), 2022, 48(6): 1-13. |
| Qian Y C, Yang X X, Zhang J J, et al. Research progress in electrode materials for supercapacitor[J]. Journal of Donghua University(Natural Science), 2022, 48(6): 1-13. | |
| [4] | Kumar Y A, Alagarasan J K, Ramachandran T, et al. The landscape of energy storage: insights into carbon electrode materials and future directions[J]. Journal of Energy Storage, 2024, 86: 111119. |
| [5] | Manasa P, Sambasivam S, Ran F. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications-A review[J]. Journal of Energy Storage, 2022, 54: 105290. |
| [6] | 刘晓丽, 黄昆明, 李新. 生物炭的制备及其在能源环境领域的应用进展[J]. 化工环保, 2025, 45(1): 1-10. |
| Liu X L, Huang K M, Li X. Progress on preparation of biochar and its application in energy and environment[J]. Environmental Protection of Chemical Industry, 2025, 45(1): 1-10. | |
| [7] | Tu J F, Qiao Z J, Wang Y Z, et al. Biomass-based porous carbon for high-performance supercapacitor electrode materials prepared from Canada goldenrod[J]. Journal of Energy Storage, 2023, 73: 109268. |
| [8] | Genel İ, Yardım Y, Saka C. Green synthesis of hierarchical nitrogen-doped porous activated carbon material based on biomass waste for high-performance energy storage as supercapacitor[J]. Biomass and Bioenergy, 2025, 197: 107818. |
| [9] | Huang T Q, Chu X Y, Cai S Y, et al. Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading[J]. Energy Storage Materials, 2019, 17: 349-357. |
| [10] | Huang Z H, Song Y, Feng D Y, et al. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12(4): 3557-3567. |
| [11] | Supiyeva Z, Pan X X, Abbas Q. The critical role of nanostructured carbon pores in supercapacitors[J]. Current Opinion in Electrochemistry, 2023, 39: 101249. |
| [12] | 赵尊侠, 郝晓亮, 方志刚, 等. 以梓树荚果为原料制备荧光碳量子点的研究[J]. 广州化工, 2021, 49(14): 40-42. |
| Zhao Z X, Hao X L, Fang Z G, et al. Preparation of fluorescent carbon quantum dots from catalpa sinensis[J]. Guangzhou Chemical Industry, 2021, 49(14): 40-42. | |
| [13] | Gunasekaran S S, Gopalakrishnan A, Subashchandrabose R, et al. Single step, direct pyrolysis assisted synthesis of nitrogen-doped porous carbon nanosheets derived from bamboo wood for high energy density asymmetric supercapacitor[J]. Journal of Energy Storage, 2021, 42: 103048. |
| [14] | Cao W X, Yang F Q. Supercapacitors from high fructose corn syrup-derived activated carbons[J]. Materials Today Energy, 2018, 9: 406-415. |
| [15] | Sun W, Lipka S M, Swartz C, et al. Hemp-derived activated carbons for supercapacitors[J]. Carbon, 2016, 103: 181-192. |
| [16] | Xuan C J, Peng Z K, Wang J, et al. Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors[J]. Chinese Chemical Letters, 2017, 28(12): 2227-2230. |
| [17] | Jiao S H, Yao Y T, Zhang J L, et al. Nano-flower-like porous carbon derived from soybean straw for efficient N-S co-doped supercapacitors by coupling in situ heteroatom doping with green activation method[J]. Applied Surface Science, 2023, 615: 156365. |
| [18] | Chen H X, Lu X Y, Wang H H, et al. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy[J]. Journal of Energy Chemistry, 2020, 49: 348-357. |
| [19] | Feng T, Wang S R, Hua Y N, et al. Synthesis of biomass-derived N, O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103286. |
| [20] | Shang M G, Zhang J, Liu X C, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science, 2021, 542: 148697. |
| [21] | Chen R W, Li X S, Huang Q B, et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755. |
| [22] | Lin Y, Chen Z Y, Yu C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
| [23] | Cheng J X, Lu Z J, Zhao X F, et al. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor[J]. Journal of Power Sources, 2021, 494: 229770. |
| [24] | Lu Z J, Liu X L, Wang T, et al. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range[J]. Journal of Colloid and Interface Science, 2023, 638: 709-718. |
| [25] | Zheng K W, Li Y Y, Zhu M, et al. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors[J]. Journal of Power Sources, 2017, 366: 270-277. |
| [26] | He S J, Chen W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors[J]. Journal of Power Sources, 2015, 294: 150-158. |
| [27] | Zhang X Y, Wang X Y, Jiang L L, et al. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons[J]. Journal of Power Sources, 2012, 216: 290-296. |
| [28] | Vijayakumar M, Santhosh R, Adduru J, et al. Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading[J]. Carbon, 2018, 140: 465-476. |
| [29] | Niu Y, Guo M Q, Zhang Y T, et al. Heteroatom-doped layered hierarchical porous carbon electrodes with high mass loadings for high-performance supercapacitors[J]. Journal of Energy Storage, 2023, 73: 109064. |
| [30] | Liu Y B, Huang G X, Li Y Y, et al. N—O—S Co-doped hierarchical porous carbons derived from calcium lignosulfonate for high-performance supercapacitors[J]. Energy & Fuels, 2020, 34(3): 3909-3922. |
| [31] | Chen L, Lian C, Jiang H, et al. Dual-conductive N, S Co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor[J]. Chemical Engineering Science, 2020, 217: 115496. |
| [32] | Cheng X L, Yuan J C, Hu J Q, et al. 2.5 V high-performance aqueous and semi-solid-state symmetric supercapacitors enabled by 3 m sulfolane-saturated aqueous electrolytes[J]. Energy Technology, 2022, 10(6): 2200157. |
| [33] | Lei J, Guo Q, Yin D R, et al. Bioconcentration and bioassembly of N/S Co-doped carbon with excellent stability for supercapacitors[J]. Applied Surface Science, 2019, 488: 316-325. |
| [34] | 田晓东, 陈智超, 侯建. KOH用量对煤气化细灰衍生活性炭理化性质及超级电容器性能的影响[J]. 动力工程学报, 2025, 45(1): 131-140, 164. |
| Tian X D, Chen Z C, Hou J. Effect of KOH dosage on the physicochemical properties and supercapacitor performance of coal gasification fine ash derived active carbon[J]. Journal of Chinese Society of Power Engineering, 2025, 45(1): 131-140, 164. | |
| [35] | Wang G J, Lin Z H, Jin S H, et al. Gelatin-derived honeycomb like porous carbon for high mass loading supercapacitors[J]. Journal of Energy Storage, 2022, 45: 103525. |
| [36] | Soni S, Pareek K, Jangid D K, et al. Carbon cloth-MnO2 nanotube composite for flexible supercapacitor[J]. Energy Storage, 2020, 2(6): 17561-17567. |
| [37] | Tang C H, Tang Z, Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors[J]. Journal of the Electrochemical Society, 2012, 159(5): A651-A656. |
| [38] | Wang Y G, Wang Z D, Xia Y Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes[J]. Electrochimica Acta, 2005, 50(28): 5641-5646. |
| [1] | Yaqi BA, Tao WU, Andi DI, Anhui LU. Progress in porous carbons for efficient separation of gaseous light hydrocarbon [J]. CIESC Journal, 2025, 76(5): 2136-2157. |
| [2] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
| [3] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
| [4] | Lin ZHOU, Bin YE, Xinyi SUN, Lingxin KONG, Yan XU, Yujun ZHAO. Study on the catalytic hydrogenation of maleic anhydride by mesoporous carbon-supported Ni catalyst [J]. CIESC Journal, 2024, 75(11): 4264-4273. |
| [5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
| [6] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
| [7] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
| [8] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
| [9] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
| [10] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
| [11] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
| [12] | Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon [J]. CIESC Journal, 2022, 73(4): 1817-1825. |
| [13] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
| [14] | Yijing WEN, Bo ZHANG, Xiaofei CHEN, Siyang ZHAO, Xin ZHOU, Yan HUANG, Zhong LI. Selectivity reversion mechanism of porous carbon for ethane-ethylene separation [J]. CIESC Journal, 2021, 72(9): 4768-4774. |
| [15] | Qiongbin DAI, Hongbin LIU, Qibin XIA, Xin ZHOU, Zhong LI. Preparation of new granular carbon material and its efficient separation of methane and nitrogen [J]. CIESC Journal, 2021, 72(8): 4196-4203. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||