CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5764-5775.DOI: 10.11949/0438-1157.20250476
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Guirong PENG(
), Yilin WANG, Jingyi QIN, Zhibin WANG(
), Songping MO, Ying CHEN
Received:2025-05-06
Revised:2025-07-16
Online:2025-12-19
Published:2025-11-25
Contact:
Zhibin WANG
彭桂荣(
), 王奕淋, 覃静沂, 王智彬(
), 莫松平, 陈颖
通讯作者:
王智彬
作者简介:彭桂荣(2001—),男,硕士研究生,mojusy@163.com
基金资助:CLC Number:
Guirong PENG, Yilin WANG, Jingyi QIN, Zhibin WANG, Songping MO, Ying CHEN. Mechanisms of dual-core-coalescence in double-emulsion droplets via photothermal manipulation[J]. CIESC Journal, 2025, 76(11): 5764-5775.
彭桂荣, 王奕淋, 覃静沂, 王智彬, 莫松平, 陈颖. 光热操控双核双重乳液滴核聚并特性[J]. 化工学报, 2025, 76(11): 5764-5775.
Add to citation manager EndNote|Ris|BibTeX
| 工质 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(Pa·s) | 表面张力/(N/m) |
|---|---|---|---|---|---|
| 水 | 998.2 | 4996.047-5.29412T+0.00858T2 | -0.6028+0.00658T-8.42644×10-6T2 | 0.06225-5.09763×10-4T+1.41113×10-6T2-1.3137×10-9T3 | 0.02-1×10-4(T-300) |
| 十六烷 | 773.4 | 28994.24-244.7219T+0.73241T2-7.17898×10-4T3 | 0.18745-1.32437×10-4T-8.53221×10-8T2 | 0.153593-1.22841×10-3T+3.33586×10-6T2-3.05677×10-9T3 |
Table 1 Physical properties of water and hexadecane
| 工质 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(Pa·s) | 表面张力/(N/m) |
|---|---|---|---|---|---|
| 水 | 998.2 | 4996.047-5.29412T+0.00858T2 | -0.6028+0.00658T-8.42644×10-6T2 | 0.06225-5.09763×10-4T+1.41113×10-6T2-1.3137×10-9T3 | 0.02-1×10-4(T-300) |
| 十六烷 | 773.4 | 28994.24-244.7219T+0.73241T2-7.17898×10-4T3 | 0.18745-1.32437×10-4T-8.53221×10-8T2 | 0.153593-1.22841×10-3T+3.33586×10-6T2-3.05677×10-9T3 |
| 网格数量/个 | 上峰值速度偏差/% | 计算成本/% |
|---|---|---|
| 791864 | 2.90 | 66.29 |
| 967032 | 2.28 | 51.86 |
| 1213056 | 0.13 | 35.05 |
| 1432448 | — | — |
Table 2 Results of grid independence verification
| 网格数量/个 | 上峰值速度偏差/% | 计算成本/% |
|---|---|---|
| 791864 | 2.90 | 66.29 |
| 967032 | 2.28 | 51.86 |
| 1213056 | 0.13 | 35.05 |
| 1432448 | — | — |
| [1] | Gu C Y, Hu C B, Ma C L, et al. Development and characterization of solid lipid microparticles containing vitamin C for topical and cosmetic use[J]. European Journal of Lipid Science and Technology, 2016, 118(7): 1093-1103. |
| [2] | 陈展珠, 叶锦华, 王智彬, 等. 三维分形集成共轴流通道实现液滴高效生成[J]. 化工学报, 2024, 75(12): 4442-4452. |
| Chen Z Z, Ye J H, Wang Z B, et al. Efficient generation of droplets through three-dimensional fractal integrated coaxial flow channels[J]. CIESC Journal, 2024, 75(12): 4442-4452. | |
| [3] | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
| Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
| [4] | Kumar A, Kaur R, Kumar V, et al. New insights into water-in-oil-in-water (W/O/W) double emulsions: properties, fabrication, instability mechanism, and food applications[J]. Trends in Food Science & Technology, 2022, 128: 22-37. |
| [5] | 吉笑盈, 郑园, 李晓鹏, 等. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
| Ji X Y, Zheng Y, Li X P, et al. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468. | |
| [6] | Hanson J A, Chang C B, Graves S M, et al. Nanoscale double emulsions stabilized by single-component block copolypeptides[J]. Nature, 2008, 455(7209): 85-88. |
| [7] | Pan J H, Chen J P, Wang X J, et al. Pickering emulsion: from controllable fabrication to biomedical application[J]. Interdisciplinary Medicine, 2023, 1(3): e20230014. |
| [8] | Baroud C N, Robert de Saint Vincent M, Delville J P. An optical toolbox for total control of droplet microfluidics[J]. Lab on a Chip, 2007, 7(8): 1029-1033. |
| [9] | Mazutis L, Baret J C, Griffiths A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion[J]. Lab on a Chip, 2009, 9(18): 2665-2672. |
| [10] | Sesen M, Alan T, Neild A. Microfluidic on-demand droplet merging using surface acoustic waves[J]. Lab on a Chip, 2014, 14(17): 3325-3333. |
| [36] | Chen X K, Xia Y, Zhang Z Y, et al. Hydrocarbon degradation by contact with anoxic water microdroplets[J]. Journal of the American Chemical Society, 2023, 145(39): 21538-21545. |
| [37] | Hsieh W D, Chen R H, Chen C W, et al. Micro-explosion of a water-in-hexadecane compound drop[J]. Journal of the Chinese Institute of Engineers, 2012, 35(5): 579-587. |
| [38] | Hadland P H, Balasubramaniam R, Wozniak G, et al. Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity[J]. Experiments in Fluids, 1999, 26(3): 240-248. |
| [39] | Zhao J F, Zhang L, Li Z D, et al. Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4655-4663. |
| [40] | Chen X P, Mandre S, Feng J J. Partial coalescence between a drop and a liquid-liquid interface[J]. Physics of Fluids, 2006, 18(5): 051705. |
| [41] | Chen X P, Mandre S, Feng J J. An experimental study of the coalescence between a drop and an interface in Newtonian and polymeric liquids[J]. Physics of Fluids, 2006, 18(9): 092103. |
| [42] | Scheele G F, Leng D E. An experimental study of factors which promote coalescence of two colliding drops suspended in water (Ⅰ)[J]. Chemical Engineering Science, 1971, 26(11): 1867-1879. |
| [11] | Liu K, Ding H J, Liu J, et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device[J]. Langmuir, 2006, 22(22): 9453-9457. |
| [12] | Shintaku H, Kuwabara T, Kawano S, et al. Micro cell encapsulation and its hydrogel-beads production using microfluidic device[J]. Microsystem Technologies, 2007, 13(8): 951-958. |
| [13] | Jia Y K, Ren Y K, Liu W Y, et al. Electrocoalescence of paired droplets encapsulated in double-emulsion drops[J]. Lab on a Chip, 2016, 16(22): 4313-4318. |
| [14] | Guan X W, Hou L K, Ren Y K, et al. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets[J]. Biomicrofluidics, 2016, 10(3): 034111. |
| [15] | Hou L K, Ren Y K, Jia Y K, et al. Continuously electrotriggered core coalescence of double-emulsion drops for microreactions[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12282-12289. |
| [16] | Deng N N, Wang W, Ju X J, et al. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics[J]. Lab on a Chip, 2013, 13(20): 4047-4052. |
| [17] | Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence[J]. Physical Review Letters, 2008, 100(2): 024501. |
| [18] | Tao Y, Liu W Y, Ge Z Y, et al. Numerical characterization of inter-core coalescence by AC dielectrophoresis in double-emulsion droplets[J]. Electrophoresis, 2022, 43(21/22): 2141-2155. |
| [19] | 宋粉红, 王伟, 陈奇成, 等. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381. |
| Song F H, Wang W, Chen Q C, et al. Coalescence characteristics of the double droplets under electric field[J]. CIESC Journal, 2021, 72(S1): 371-381. | |
| [20] | Xie C Y, Meng S X, Xue L H, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017, 33(49): 14139-14148. |
| [21] | Feng K, Gao N, Zhang W L, et al. Creation of nonspherical microparticles through osmosis-driven arrested coalescence of microfluidic emulsions[J]. Small, 2020, 16(9): e1903884. |
| [22] | 陈庆国, 宋春辉, 梁雯, 等. 非均匀电场下乳化油中液滴变形动力学行为[J]. 化工学报, 2015, 66(3): 955-964. |
| Chen Q G, Song C H, Liang W, et al. Kinetics behavior of water droplet deformation in emulsified oil subjected to non-uniform electric field[J]. CIESC Journal, 2015, 66(3): 955-964. | |
| [23] | Su H S, Wang Z B, Chen Y, et al. Numerical simulation on interface dynamics of core coalescence of double-emulsion droplets[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21248-21260. |
| [24] | Cordero M L, Burnham D R, Baroud C N, et al. Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball[J]. Applied Physics Letters, 2008, 93(3): 034107. |
| [25] | Robert de Saint Vincent M, Wunenburger R, Delville J P. Laser switching and sorting for high speed digital microfluidics[J]. Applied Physics Letters, 2008, 92(15): 154105. |
| [26] | Selva B, Miralles V, Cantat I, et al. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping[J]. Lab on a Chip, 2010, 10(14): 1835-1840. |
| [27] | Bezuglyi B A, Ivanova N A. Creation, transportation, and coalescence of liquid drops by means of a light beam[J]. Fluid Dynamics, 2006, 41(2): 278-285. |
| [28] | Jiang P C, Chen R, Zhu X, et al. Light droplet levitation in relation to interface morphology and liquid property[J]. The Journal of Physical Chemistry Letters, 2022, 13(21): 4762-4767. |
| [29] | Chen X G, Hou L K, Yin Z Q, et al. NIR light-triggered core-coalescence of double-emulsion drops for micro-reactions[J]. Chemical Engineering Journal, 2023, 454: 140050. |
| [30] | Wang Z B, Chen R, Zhu X, et al. Control of the droplet generation by an infrared laser[J]. AIP Advances, 2018, 8: 015302. |
| [31] | Yang Y J, Wang Z B, Chen R, et al. Droplet migration and coalescence in a microchannel induced by the photothermal effect of a focused infrared laser[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1912-1925. |
| [32] | Chen Z Z, Qin J Y, Wang Y L, et al. Diverse manipulations of double-emulsion droplets using photothermal effect of infrared laser[J]. Applied Thermal Engineering, 2025, 266: 125751. |
| [33] | Albadawi A, Donoghue D B, Robinson A J, et al. On the analysis of bubble growth and detachment at low capillary and Bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91. |
| [34] | Li S Z, Chen R, Wang H, et al. Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J]. Science Bulletin, 2015, 60(22): 1911-1926. |
| [35] | Wang Z B, Li S Z, Chen R, et al. Numerical study on dynamic behaviors of the coalescence between the advancing liquid meniscus and multi-droplets in a microchannel using CLSVOF method[J]. Computers & Fluids, 2018, 170: 341-348. |
| [1] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [2] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [3] | Zhuolong LIU, Yunhua GAN, Keyang QU, Ningguang CHEN, Minghui PAN. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion [J]. CIESC Journal, 2025, 76(9): 4800-4808. |
| [4] | Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element [J]. CIESC Journal, 2025, 76(9): 4440-4448. |
| [5] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [6] | Shuai ZHANG, Jiayu XU, Leina HUA, Wei GE. Coupled simulation method of CG-DPM and MP-PIC for gas-solid system [J]. CIESC Journal, 2025, 76(9): 4412-4424. |
| [7] | Ze WANG, Qiong HU, Yajing CHEN, Yan WANG, Jiaxu GENG, Feiran SHEN. Leakage characteristics, sealing mechanism, and optimization design of self-impacting liquid seals [J]. CIESC Journal, 2025, 76(8): 4194-4204. |
| [8] | Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model [J]. CIESC Journal, 2025, 76(8): 3885-3893. |
| [9] | Xinquan CHANG, Kexue ZHANG, Jun WANG, Guodong XIA. Thermophoretic forces on irregular particles in the free molecular regime [J]. CIESC Journal, 2025, 76(8): 3944-3953. |
| [10] | Guoqing SU, Xuemei TIAN, Yan LI, Jianwen ZHANG, Zhijun ZHANG. Erosion analysis and improvement of curved-tee in pneumatic conveying system [J]. CIESC Journal, 2025, 76(8): 3894-3904. |
| [11] | Hang ZHOU, Sijing ZHANG, Jian LIU, Xiaosong ZHANG. Numerical analysis of flow boiling heat transfer of zeotropic mixtures in mini-channels [J]. CIESC Journal, 2025, 76(8): 3864-3872. |
| [12] | Xi CHEN, Shuyan WANG, Baoli SHAO, Nuo DING, Lei XIE. Numerical simulation study of liquid-solid fluidized beds based on second-order moment model of particle dynamic restitution coefficient [J]. CIESC Journal, 2025, 76(7): 3246-3258. |
| [13] | Juhui CHEN, Ke CHEN, Dan LI, Tianyi YANG, Michael ZHURAVKOV, Siarhel LAPATSIN, Wenrui JIANG. Fluidization research on the FCC-assisted nanoparticle hybrid system based on the multicomponent DQMOM model [J]. CIESC Journal, 2025, 76(6): 2616-2625. |
| [14] | Yiyun ZHANG, Hengzhi CHEN, Yang LI, Chang'an MU, Quanhai WANG. Effects of turbulence on radial gas diffusion in binary particle fluidized bed [J]. CIESC Journal, 2025, 76(6): 2559-2568. |
| [15] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||