CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2616-2625.DOI: 10.11949/0438-1157.20241322
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Juhui CHEN1(
), Ke CHEN1, Dan LI1, Tianyi YANG1, Michael ZHURAVKOV2,3, Siarhel LAPATSIN2,3, Wenrui JIANG3
Received:2024-11-18
Revised:2025-01-02
Online:2025-07-09
Published:2025-06-25
Contact:
Juhui CHEN
陈巨辉1(
), 陈轲1, 李丹1, 杨天一1, ZHURAVKOV Michael2,3, LAPATSIN Siarhel2,3, 姜文锐3
通讯作者:
陈巨辉
作者简介:陈巨辉(1982—),女,博士,教授,chenjuhui@hrbust.edu.cn
基金资助:CLC Number:
Juhui CHEN, Ke CHEN, Dan LI, Tianyi YANG, Michael ZHURAVKOV, Siarhel LAPATSIN, Wenrui JIANG. Fluidization research on the FCC-assisted nanoparticle hybrid system based on the multicomponent DQMOM model[J]. CIESC Journal, 2025, 76(6): 2616-2625.
陈巨辉, 陈轲, 李丹, 杨天一, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于多组分DQMOM模型的FCC辅助纳米颗粒混合体系流化研究[J]. 化工学报, 2025, 76(6): 2616-2625.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 初始床高/ mm | 30 | 30 |
| 气体密度/(kg/m3) | 1.225 | 1.225 |
| 气体黏度/(Pa·s) | — | 1.7894×10-5 |
| 弹性恢复系数 | — | 0.5 |
| 气体入口速度/(cm/s) | 8 | 8 |
| 温度/K | 298.15 | 298.15 |
Table 1 Parameters used in the simulation
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 初始床高/ mm | 30 | 30 |
| 气体密度/(kg/m3) | 1.225 | 1.225 |
| 气体黏度/(Pa·s) | — | 1.7894×10-5 |
| 弹性恢复系数 | — | 0.5 |
| 气体入口速度/(cm/s) | 8 | 8 |
| 温度/K | 298.15 | 298.15 |
| 颗粒 | 粒径/μm | 密度/(kg/m3) |
|---|---|---|
| SiO2 | 0.03 | 2560 |
| ZnO | 0.02 | 5600 |
| FCC-1 | 130 | 1470 |
| FCC-2 | 150 | 1020 |
| FCC-3 | 190 | 990 |
Table 2 Particle parameter
| 颗粒 | 粒径/μm | 密度/(kg/m3) |
|---|---|---|
| SiO2 | 0.03 | 2560 |
| ZnO | 0.02 | 5600 |
| FCC-1 | 130 | 1470 |
| FCC-2 | 150 | 1020 |
| FCC-3 | 190 | 990 |
| 网格数量/个 | 35 mm床高处颗粒体积分数 | 相对误差/% |
|---|---|---|
| 1000 | 0.410 | |
| 2000 | 0.389 | 5.40 |
| 4000 | 0.374 | 4.01 |
| 8000 | 0.372 | 0.53 |
| 16000 | 0.371 | 0.27 |
Table 3 Grid independence test
| 网格数量/个 | 35 mm床高处颗粒体积分数 | 相对误差/% |
|---|---|---|
| 1000 | 0.410 | |
| 2000 | 0.389 | 5.40 |
| 4000 | 0.374 | 4.01 |
| 8000 | 0.372 | 0.53 |
| 16000 | 0.371 | 0.27 |
| [1] | 侯旺君, 闫翎鹏, 曹哲勇, 等. 煤基零维纳米碳材料的合成、性能及其在能源转换和存储应用中的研究进展[J]. 化工学报, 2022, 73(11): 4791-4813. |
| Hou W J, Yan L P, Cao Z Y, et al. Research progress of synthesis and properties of coal-based zero-dimensional nanocarbon materials and their applications in energy conversion and storage[J]. CIESC Journal, 2022, 73(11): 4791-4813. | |
| [2] | 赵之端, 赵蒙, 刘道银, 等. 振动和搅拌对SiO2纳米颗粒聚团流化的影响对比研究[J]. 工程热物理学报, 2021, 42(1): 136-142. |
| Zhao Z D, Zhao M, Liu D Y, et al. Comparative study on the effect of vibration and stirring on the fluidization of SiO2 nanoparticle agglomerates[J]. Journal of Engineering Thermophysics, 2021, 42(1): 136-142. | |
| [3] | 郭婷, 何川, 李海念, 等. 声场对导向管喷流床环隙区流化质量的影响[J]. 化学反应工程与工艺, 2019, 35(6): 501-508. |
| Guo T, He C, Li H N, et al. Effect of an acoustic field on fluidization quality in the annulus of a spout-fluidized bed with a draft tube[J]. Chemical Reaction Engineering and Technology, 2019, 35(6): 501-508. | |
| [4] | 王荘, 吕潇, 邵媛媛, 等. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927. |
| Wang Z, Lyu X, Shao Y Y, et al. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927. | |
| [5] | 曾玺, 王芳, 余剑, 等. 微型流化床反应分析的方法基础与应用研究[J]. 化工进展, 2016, 35(6): 1687-1697. |
| Zeng X, Wang F, Yu J, et al. Fundamentals and applications of micro fluidized bed reaction analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1687-1697. | |
| [6] | 许可, 韩梦琪, 张海萍, 等. C类颗粒添加纳米细粉后的流态化行为研究[J]. 高校化学工程学报, 2019, 33(6): 1361-1368. |
| Xu K, Han M Q, Zhang H P, et al. Study on flow behaviors of group C particles blended with nano additives[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1361-1368. | |
| [7] | Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, et al. Multiscale characterization of nanoparticles in a magnetically assisted fluidized bed[J]. Particuology, 2020, 51: 64-71. |
| [8] | Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, et al. Enhancing the fluidization quality of nanoparticles using external fields[J]. Advanced Powder Technology, 2018, 29(12): 3145-3154. |
| [9] | Ajbar A, Alhumazi K, Asif M. Improvement of the fluidizability of cohesive powders through mixing with small proportions of group A particles[J]. The Canadian Journal of Chemical Engineering, 2005, 83(6): 930-943. |
| [10] | Zhou Y, Zhu J. A review on fluidization of Geldart group C powders through nanoparticle modulation[J]. Powder Technology, 2021, 381: 698-720. |
| [11] | Duan H, Liang X Z, Zhou T, et al. Fluidization of mixed SiO2 and ZnO nanoparticles by adding coarse particles[J]. Powder Technology, 2014, 267: 315-321. |
| [12] | 于明州, 林建忠. 纳米颗粒多相流体动力学研究及应用[J]. 力学与实践, 2010, 32(3): 1-9. |
| Yu M Z, Lin J Z. The dynamics of nanoparitcle-laden multiphase flow and its applications[J]. Mechanics in Engineering, 2010, 32(3): 1-9. | |
| [13] | 刘演华, 林建忠. 两相流中颗粒参数分布的矩方法研究[J]. 空气动力学学报, 2009, 27(6): 656-663. |
| Liu Y H, Lin J Z. Research on method of momens of particulate parameter distribution in multiphase flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 656-663. | |
| [14] | Icardi M, Ronco G, Marchisio D L, et al. Efficient simulation of gas-liquid pipe flows using a generalized population balance equation coupled with the algebraic slip model[J]. Applied Mathematical Modelling, 2014, 38(17/18): 4277-4290. |
| [15] | Duan X X, Feng X, Yang C, et al. CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 675-683. |
| [16] | 魏利平, 江国栋, 滕海鹏. 双组分黏性颗粒相间曳力模型[J]. 工程热物理学报, 2019, 40(1): 114-117. |
| Wei L P, Jiang G D, Teng H P. Cohesive particle-particle drag model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 114-117. | |
| [17] | Ding J M, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. |
| [18] | 王垚, 金涌, 魏飞, 等. 纳米级SiO2聚团散式流化中聚团参数及曳力系数[J]. 清华大学学报(自然科学版), 2001, 41(S1): 32-35. |
| Wang Y, Jin Y, Wei F, et al. Agglomeration parameters and drag coefficients in agglomerate particulate fluidization of SiO2 nanoparticles[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(S1): 32-35. | |
| [19] | 李清, 夏珉, 何慧灵, 等. 水平管内气液两相流中气泡滑移速度的数值模拟[J]. 石油化工, 2011, 40(10): 1078-1082. |
| Li Q, Xia M, He H L, et al. Numerical simulation of bubble slip velocity in gas-liquid two-phase flow within horizontal pipe[J]. Petrochemical Technology, 2011, 40(10): 1078-1082. | |
| [20] | Fan R, Marchisio D L, Fox R O. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds[J]. Powder Technology, 2004, 139(1): 7-20. |
| [21] | Mazzei L, Marchisio D L, Lettieri P. Direct quadrature method of moments for the mixing of inert polydisperse fluidized powders and the role of numerical diffusion[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5141-5152. |
| [22] | Kong B, Fox R O. A moment-based kinetic theory model for polydisperse gas-particle flows[J]. Powder Technology, 2020, 365: 92-105. |
| [23] | Marchisio D L, Vigil R D, Fox R O. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science, 2003, 258(2): 322-334. |
| [24] | Ramachandran R, Immanuel C D, Stepanek F, et al. A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation[J]. Chemical Engineering Research and Design, 2009, 87(4): 598-614. |
| [25] | Vigil R D. On equilibrium solutions of aggregation-fragmentation problems[J]. Journal of Colloid and Interface Science, 2009, 336(2): 642-647. |
| [26] | Jiang Y Y, Xu Z H, Zhang M Z, et al. Interactions between gas flow and reversible chemical reaction in porous media[J]. Journal of Central South University, 2017, 24(5): 1144-1154. |
| [27] | Ma H Y, Yu M Z, Jin H H. A study of the evolution of nanoparticle dynamics in a homogeneous isotropic turbulence flow via a DNS-TEMOM method[J]. Journal of Hydrodynamics, 2020, 32(6): 1091-1099. |
| [28] | 郑建祥, 许帅, 王京阳. 超细颗粒聚团模型及湍流聚并器聚团研究[J]. 中国电机工程学报, 2016, 36(16): 4389-4395, 4524. |
| Zheng J X, Xu S, Wang J Y. Simulation study of ultrafine particle aggregation models and agglomerator coagulation[J]. Proceedings of the CSEE, 2016, 36(16): 4389-4395, 4524. | |
| [29] | Marchisio D L, Soos M, Sefcik J, et al. Role of turbulent shear rate distribution in aggregation and breakage processes[J]. AIChE Journal, 2006, 52(1): 158-173. |
| [30] | Shrestha S, Wang B, Dutta P. Nanoparticle processing: understanding and controlling aggregation[J]. Advances in Colloid and Interface Science, 2020, 279: 102162. |
| [31] | Hosseinibalam F, Hassanzadeh S, Mirmohammadi M. Simulation of tidal energy extraction by using FLUENT model[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43: 2035-2042. |
| [1] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [2] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| [3] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
| [4] | Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster [J]. CIESC Journal, 2025, 76(1): 363-373. |
| [5] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
| [6] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
| [7] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
| [8] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
| [9] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
| [10] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
| [11] | Yewei DING, Wenbo KANG, Yutong SONG, Qinxi FAN, Yuanhui JI. Mechanism and screening of indomethacin self-assembled nanomedical drugs [J]. CIESC Journal, 2024, 75(11): 4141-4151. |
| [12] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
| [13] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
| [14] | Juhui CHEN, Ran AN, Dan LI, Haoming GAO, Kun ZHANG. Effect of van der Waals forces on the motion of magnetic field fluidized nanoparticles [J]. CIESC Journal, 2024, 75(10): 3518-3527. |
| [15] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||