CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6099-6109.DOI: 10.11949/0438-1157.20250496
• Material science and engineering, nanotechnology • Previous Articles
Shengyuan LIANG1,2(
), Rudong ZHOU1,2(
), Wenkai LI1,2, Lijun WANG1,2, Shikuo LI3(
)
Received:2025-05-07
Revised:2025-07-02
Online:2025-12-19
Published:2025-11-25
Contact:
Rudong ZHOU, Shikuo LI
梁晟源1,2(
), 周如东1,2(
), 李文凯1,2, 王李军1,2, 李士阔3(
)
通讯作者:
周如东,李士阔
作者简介:梁晟源(1990—),男,博士,研发工程师,liangshy10@cnooc.com.cn
基金资助:CLC Number:
Shengyuan LIANG, Rudong ZHOU, Wenkai LI, Lijun WANG, Shikuo LI. Study on electromagnetic wave absorption properties of Fe3O4/FeNi/CNT composites with magnetic-dielectric loss[J]. CIESC Journal, 2025, 76(11): 6099-6109.
梁晟源, 周如东, 李文凯, 王李军, 李士阔. 金属诱导制备Fe3O4/FeNi/CNT复合材料及其吸波性能研究[J]. 化工学报, 2025, 76(11): 6099-6109.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Complex permittivity real part ε′ (a), imaginary part ε″ (b), dielectric loss tangent tanδε (c), and complex permeability real part μ′ (d), imaginary part μ″ (e), magnetic loss tangent tanδµ (f) of S0, S1, S2, S3
Fig.8 Electrical conductivity (a), conduction loss (b), polarization loss (c) of S0, S1, S2, S3, and matching diagram of reflection loss and impedance of S2 (d)
Fig.9 (a) Schematic diagram of the CST simulation model for the PEC substrate and S1—S3 at incident angles θ ranging from -60° to 60°; (b) RCS simulation results at different angles; (c)—(e) Mean RCS reduction and CST simulation results
| [20] | Liu X Y, Zhou J M, Xue Y, et al. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 16(1): 174. |
| [21] | Wang S P, Liu Q C, Li S K, et al. Joule-heating-driven synthesis of a honeycomb-like porous carbon nanofiber/high entropy alloy composite as an ultralightweight electromagnetic wave absorber[J]. ACS Nano, 2024, 18(6): 5040-5050. |
| [22] | 胡兴枝, 张皓焱, 庄境坤, 等. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
| Hu X Z, Zhang H Y, Zhuang J K, et al. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles[J]. CIESC Journal, 2023, 74(8): 3584-3596. | |
| [23] | 张晓民, 党小来, 高红洁, 等.粉煤灰空心微珠@碳纳米管的吸波性能研究[J].化工矿物与加工, 2025, 54(2): 52-58. |
| Zhang X M, Dang X L, Gao H J, et al. Study on the wave-absorbing properties of fly ash cenospheres@carbon nanotubes[J]. Industrial Minerals & Processing, 2025, 54(2): 52-58. | |
| [24] | Cai H D, Guo J, Hu H B, et al. Carbon nanotube/FeNi3 nanoparticle composites for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2024, 7(10): 11302-11312. |
| [25] | Guo Y M, Zhu Y W, Sun J, et al. MOF-derived carbon nanotube bridged Co/MoC@ NC composites for enhanced electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2025, 1010: 177346. |
| [26] | Chen Y K, Wang X Q, Cui W G, et al. Multiple Schottky contacts motivated via defects to tune the response ability of electromagnetic waves[J]. Advanced Functional Materials, 2025, 35(11): 2417215. |
| [27] | Rao L J, Wang L, Yang C D, et al. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption[J]. Advanced Functional Materials, 2023, 33(16): 2213258. |
| [28] | Luo J H, Yan W X, Li X P, et al. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2023, 158: 207-217. |
| [29] | Zhou C Q, Lu J Y, Yuan M S, et al. Lightweight, thermal-insulating, flame-retardant Co@CNT composite carbon foam for efficient broadband electromagnetic wave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2025, 192: 108791. |
| [30] | Liu W, Shao Q W, Ji G B, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2017, 313: 734-744. |
| [31] | 李敏, 孟献丰. ZIF-67衍生Co@C/MoS2纳米复合材料的制备及微波吸收性能[J].无机化学学报, 2024, 40(10): 1932-1942. |
| Li M, Meng X F. Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. | |
| [32] | Liu J L, Liang H S, Wei B, et al. "Matryoshka doll" heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption[J]. Small Structures, 2023, 4(7): 2200379. |
| [33] | 郭铮铮, 赵一丹, 王辅强, 等. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J].化工学报, 2025, 76(7): 3719-3732. |
| Guo Z Z, Zhao Y D, Wang F Q, et al. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture[J]. CIESC Journal, 2025, 76(7): 3719-3732. | |
| [34] | Luo J H, Li X P, Yan W X, et al. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption[J]. Carbon, 2023, 205: 552-561. |
| [35] | Shi X L, Cao M S, Yuan J, et al. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability[J]. Applied Physics Letters, 2009, 95(16): 163108. |
| [36] | Li L W, Ban Q F, Song Y J, et al. Self-templating engineering of hollow N-doped carbon microspheres anchored with ternary FeCoNi alloys for low-frequency microwave absorption[J]. Small, 2024, 20(50): 2406602. |
| [37] | Zhou C L, Wang X X, Luo H, et al. Rapid and direct growth of bipyramid TiO2 from Ti3C2T x MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption[J]. Chemical Engineering Journal, 2020, 383: 123095. |
| [38] | Wang J J, Wang C, Yang H T, et al. Lightweight asymmetric C/SiC nanofiber film with conductive-dielectric gradient for adjustable electromagnetic interference shielding[J]. Carbon, 2025, 235: 120068. |
| [39] | Zhang Z Q, Wang B J, Wang G H, et al. Embedded Ni/NiO heterostructure in MoO3– x nanorods toward reinforced interfacial polarization for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2024, 7(16): 19548-19560. |
| [40] | Yang X, Qiu B Y, Li X J, et al. In-situ growth of FeCoNi nanoparticles onto 1D bamboo fiber carbon for enhanced electromagnetic wave absorption[J]. Carbon, 2024, 219: 118804. |
| [1] | Li Q, Zhang Z, Qi L P, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Advanced Science, 2019, 6(8): 1801057. |
| [2] | Xia Y X, Gao W W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. |
| [3] | Zeng X J, Wu L S, Yang X F, et al. Design of gel-based materials for electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(33): 2502671. |
| [4] | Tao J Q, Yan Y, Zhou J T, et al. Anionic high-entropy doping engineering for electromagnetic wave absorption[J]. Nature Communications, 2025, 16: 3163. |
| [5] | Cui A G, Wang C, Miao Y K, et al. B─C bonding configuration manipulation strategy toward synergistic optimization of polarization loss and conductive loss for highly efficient electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(15): 2420292. |
| [6] | You X, Ouyang H Y, Deng R X, et al. Graphene aerogel composites with self-organized nanowires-packed honeycomb structure for highly efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 17(1): 47. |
| [7] | 陈宏刚, 雷俊, 何巍, 等. Ti3C2T x @CNTs/Ni空心球复合材料的制备及其吸波性能研究[J].功能材料, 2025, 56(5): 5192-5198. |
| Chen H G, Lei J, He W, et al. Preparation of Ti3C2T x @CNTs/Ni hollow sphere composites and their wave-absorbing properties[J]. Journal of Functional Materials, 2025, 56(5): 5192-5198. | |
| [8] | Wei Z H, Li Z C, Chen D W, et al. Recent progress of advanced composites for broadband electromagnetic wave absorption[J]. Small Structures, 2025, 6(7): 2400615. |
| [9] | Tan D L, Wang Q, Li M R, et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 492: 152245. |
| [10] | 马茜, 强荣, 邵玉龙, 等.MOFs衍生钴/碳复合材料的制备及吸波性能研究[J].材料导报, 2025, 39(11): 181-189. |
| Ma Q, Qiang R, Shao Y L, et al. Preparation and absorption properties of Co/C composites derived from MOFs[J]. Materials Reports, 2025, 39(11): 181-189. | |
| [11] | Luo J W, Lv Z, Zhang L P, et al. Modulation of dielectric behavior in ceramic‐based materials for integrated electromagnetic waves absorption and thermal conduction[J]. Advanced Functional Materials, 2025, 35(24): 2420086. |
| [12] | 蒙真真, 武志红, 刘新伟, 等. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897. |
| Meng Z Z, Wu Z H, Liu X W, et al. Study on absorbing properties of bamboo-like silicon carbide whiskers[J]. CIESC Journal, 2020, 71(4): 1889-1897. | |
| [13] | Lu C X, Zhao J Q, An Z J, et al. Biomass-derived spherical carbon materials for efficient electromagnetic wave absorption[J]. ACS Applied Electronic Materials, 2024, 6(10): 7623-7632. |
| [14] | 张丰发, 布和巴特尔, 齐海群, 等.碳基磁性复合材料在电磁波吸收领域的研究进展[J].黑龙江工程学院学报,2021, 35(2): 1-6. |
| Zhang F F, Buhe B T E, Qi H Q, et al. Research on the progress of carbon-based magnetic composites in electromagnetic wave absorption field[J]. Journal of Heilongjiang Institute of Technology, 2021, 35(2): 1-6. | |
| [15] | 王皓, 刘子义, 周青青, 等. Fe3O4-MXene的电磁波吸收性能[J].磁性材料及器件, 2025, 56(2): 31-36. |
| Wang H, Liu Z Y, Zhou Q Q, et al. Electromagnetic wave absorption performance of Fe3O4-MXene[J]. Journal of Magnetic Materials and Devices, 2025, 56(2): 31-36. | |
| [16] | Chen L Z, Pan J J, Wang T, et al. 1D magnetic nickel-carbon matrix nanotube composites derived from hydrogen-bonded organic frameworks and metal-organic frameworks for electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(3): 2409432. |
| [17] | Wu T, Ren F, Guo Z Z, et al. Hierarchical assembly of ternary MOF-derived sandwich composites for high-efficiency tunable electromagnetic wave absorption[J]. Small, 2024, 20(52): 2407599. |
| [18] | Wang J Y, Zhou J T, Van Zalinge H, et al. Hollow spherical SiC@Ni composites towards the tunable wideband electromagnetic wave absorption[J]. Composites Part B: Engineering, 2024, 276: 111361. |
| [19] | Zhao R, Khalifa M E, Hessien M M, et al. Fabrication of carbon fibers doped with Prussian blue derivative composites for enhanced electromagnetic wave absorption[J]. Advanced Composites and Hybrid Materials, 2024, 7(5): 177. |
| [1] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [2] | Shuai ZHANG, Jiayu XU, Leina HUA, Wei GE. Coupled simulation method of CG-DPM and MP-PIC for gas-solid system [J]. CIESC Journal, 2025, 76(9): 4412-4424. |
| [3] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [4] | Aqiang WU, Xiangqun ZHUGE, Tong LIU, Mingxing WANG, Kun LUO. Impact of nanoscale Prussian blue suspension electrolyte on the performance of lithium-oxygen batteries [J]. CIESC Journal, 2025, 76(8): 4310-4317. |
| [5] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [6] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [7] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [8] | Jian PENG, Lukai SHEN, Likun WANG, Lihong XIN, Yong LIU, Gaoling ZHAO, Sainan MA, Gaorong HAN. Preparation of tungstate nanomaterials and research progress in electrochromic field [J]. CIESC Journal, 2025, 76(6): 2451-2468. |
| [9] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [10] | Yingdong ZHAO, Peijun JI, Riyao CONG, Haichao FU, Jialong ZHANG, Pengzhong CHEN, Xiaojun PENG. Preparation and high-resolution lithography study of organic tin photoresists containing acrylates [J]. CIESC Journal, 2025, 76(4): 1820-1830. |
| [11] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
| [12] | Yanbei LIU, Ruoming WANG, Juan LIU, Taimoor Raza, Yuzheng LU, Rizwan Raza, Bin ZHU, Songbo LI, Shengli AN, Sining YUN. Preparation of CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ electrolyte and its property in semiconductor ionic fuel cells performance [J]. CIESC Journal, 2025, 76(3): 1353-1362. |
| [13] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
| [14] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
| [15] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||