化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3074-3083.doi: 10.11949/0438-1157.20201710

• 青海盐湖资源综合利用专栏 • 上一篇    下一篇

含钙三元氯化物体系相图计算与熔盐热稳定性

魏小兰1(),谢佩1,王维龙2,陆建峰2(),丁静2   

  1. 1.华南理工大学化学与化工学院,广东 广州 510641
    2.中山大学材料科学与工程学院,广东 广州 510006
  • 收稿日期:2020-11-30 修回日期:2021-01-26 出版日期:2021-06-05 发布日期:2021-06-05
  • 通讯作者: 陆建峰 E-mail:xlwei@scut.edu.cn;lujfeng@mail.sysu.edu.cn
  • 作者简介:魏小兰(1963—),女,博士,教授,xlwei@scut.edu.cn
  • 基金资助:
    NSFC-柴达木盐湖化工科学研究联合基金重点项目(U1707603);NSFC-广东省联合基金重点项目(U1601215)

Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium

WEI Xiaolan1(),XIE Pei1,WANG Weilong2,LU Jianfeng2(),DING Jing2   

  1. 1.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2020-11-30 Revised:2021-01-26 Published:2021-06-05 Online:2021-06-05
  • Contact: LU Jianfeng E-mail:xlwei@scut.edu.cn;lujfeng@mail.sysu.edu.cn

摘要:

为寻求太阳能热利用高温传热储热材料,以盐湖资源为原料,提出分支/分区相图计算方法,设计NaCl-CaCl2-KCl和KCl-CaCl2-MgCl2熔盐传热储热材料。基于正规溶液模型,以不同分支不同相互作用系数,计算了5个边界体系相图,实现用正规溶液模型计算含化合物体系复杂相图。含化合物KCl-CaCl2和KCl-MgCl2体系及3个不含化合物二元体系的计算相图与实验相图十分吻合。以分区域方法计算三元体系相图,预测出5个低共熔点来指导熔盐制备。采用差示扫描量热法测试并验证熔盐最低共熔点,确定其工作温度下限;以质量损失实验,确定其工作温度上限。结果表明,钠钾钙和钾镁钙氯化物熔盐能在550~850℃和480~700℃内稳定运行,可用作高温传热储热流体。

关键词: 太阳能, 氯化物熔盐, 相平衡, 相互作用系数, 相图, 热稳定性

Abstract:

In order to search for high temperature heat transfer and thermal storage materials for solar thermal utilization, the phase diagram calculation method with branchs/regions separation was proposed, and two ternary eutectic mixtures of NaCl-CaCl2-KCl and KCl-CaCl2-MgCl2 were designed. Based on the normal solution model, the phase diagrams of five boundary systems NaCl-CaCl2,CaCl2-MgCl2,KCl-NaCl,KCl-CaCl2, and KCl-MgCl2 of the above two ternary systems were calculated with different interaction coefficients of different branches, and the complex phase diagrams containing compounds can be calculated by using the normal solution model. The calculated complex phase diagrams of KCl-CaCl2, KCl-MgCl2 systems and the other three systems without compounds were in good agreement with the experimental phase diagrams. Then, the phase diagrams of the ternary systems were calculated by sub region method based on the different interaction coefficients from the five boundary systems, and five new eutectic points of the ternary systems were predicted to guide the preparation of molten salt materials. The lowest eutectic point was verified by differential scanning calorimetry, and the lower limit of molten salt working temperature was determined. The working temperature range was determined by mass loss method. The results show that sodium potassium calcium and potassium magnesium calcium chloride molten salts can operate stably at 550—850℃ and 480—700℃, and can be used as high-temperature heat transfer and heat storage fluids.

Key words: solar energy, chloride molten salt, phase equilibrium, interaction coefficient, phase diagram, thermal stability

中图分类号: 

  • TK 02
1 Zhang P, Cheng J H, Jin Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176: 36-41.
2 Wu Y T, Li Y, Lu Y W, et al. Novel low melting point binary nitrates for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 114-121.
3 Zhao Y J, Wang R Z, Wang L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014, 70: 272-277.
4 Mohan G, Venkataraman M B, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600 ℃[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 319-337.
5 Wei X L, Song M, Wang W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156: 306-310.
6 刘波. 三元氯化物熔盐腐蚀性研究及新型传蓄热熔盐体系的构建[D]. 广州: 华南理工大学, 2017.
Liu B. Corrosion behavior of ternary chloride molten salt and construction of new chloride molten salt systems[D]. Guangzhou: South China University of Technology, 2017.
7 彭强. 多元熔盐传热蓄热材料的设计及性能调控[D]. 广州: 中山大学, 2011.
Peng Q. Design and performance control for multiple molten salts materials with heat transfer and thermal storage[D]. Guangzhou: Sun Yat-sen University, 2011.
8 徐芳, 王军涛. 热力学模拟LiNO3-NaNO3-KNO3和KCl-LiCl-CaCl2体系的三元共晶点[J]. 化学研究, 2015, 26(2): 179-184.
Xu F, Wang J T. Thermodynamic modeling of eutectic points in the LiNO3-NaNO3-KNO3 and KCl-LiCl-CaCl2 ternary systems[J]. Chemical Research, 2015, 26(2): 179-184.
9 Gal I J, Zsigrai I J, Pallgric I, et al. Calculation of phase equilibrium of ternary additive molten salt systems with a common anion [J]. Journal of the Chemical Society Faraday Transactions, 1983, 79(9): 2171-2178.
10 Robelin C, Chartrand P. Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system[J]. The Journal of Chemical Thermodynamics, 2011, 43(3): 377-391.
11 Pelton A D, Chartrand P. Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1361-1383.
12 乔芝郁. 冶金和材料计算物理化学[M]. 北京: 冶金工业出版社, 1999: 16.
Qiao Z Y. Computerized Physical Chemistry of Metallurgy and Materials[M]. Beijing: Metallurgical Industry Press, 1999: 16.
13 Foosnaes T, Østvold T, Øye H A, et al. Calculation of charge asymmetric additive ternary phase diagrams with and without compound formation[J]. Acta Chemica Scandinavica, 1978, 32a: 973-987.
14 Ding J, Pan G, Du L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389.
15 Okada I, Takagi R, Kawamura K. A molecular dynamics simulation of molten (Li-Rb)Cl implying the chemla effect of mobilities[J]. Zeitschrift Für Naturforschung A, 1980, 35(5): 493-499.
16 Matsumiya M, Matsuura H, Takagi R, et al. Internal cation mobilities in the ternary molten system (Na, K, Cs)Cl[J]. Journal of the Electrochemical Society, 2000, 147(11): 4206.
17 Matsumiya M, Takagi R. Temperature dependence of the electric properties of molten ternary chlorides by MD simulation[J]. Journal of Electroanalytical Chemistry, 2002, 529(1): 28-33.
18 Matsumiya M, Takagi R. A molecular dynamics simulation of the electric properties in molten chloride and fluoride quaternary systems[J]. Electrochimica Acta, 2001, 46(23): 3563-3572.
19 Matsumiya M, Takagi R. Investigation on the electric properties in molten quaternary systems by MD simulation[J]. Journal of Molecular Liquids, 2003, 102(1/2/3): 143-172.
20 Mayer J E. Dispersion and polarizability and the van der Waals potential in the alkali halides[J]. The Journal of Chemical Physics, 1933, 1(4): 270-279.
21 Gal I J, Paligorić I. Calculation of phase diagrams of binary salt mixtures with a common anion[J]. Journal of the Chemical Society, Faraday Transactions (1): Physical Chemistry in Condensed Phases, 1982, 78(6): 1993.
22 宋明, 魏小兰, 彭强, 等. 新型三元氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396.
Song M, Wei X L, Peng Q, et al. Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of Engineering Thermophysics, 2015, 36(2): 393-396.
23 廖敏, 丁静, 魏小兰, 等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17.
Liao M, Ding J, Wei X L, et al. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Chemicals Industry, 2008, 40(10): 15-17.
24 Janz G J, Tomkins R P T. Physical properties data compilations relevant to energy storage [R]. National Bureau of Standards, 1981.
25 赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2091.
26 Sora K, Garainer J. Thermochemical Data of Pure Substances[M]. 3rd ed. New York: VCH Publishers, 1995.
27 Lin P L, Pelton A D, Bale C W. Computation of ternary molten salt phase diagrams[J]. Journal of the American Ceramic Society, 1979, 62(7/8): 414-422.
28 Peng Q, Ding J, Wei X L, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817.
29 Levin E M, Robbins C R, Mcmurdie H F, et al. Phase Diagrams for Ceramists[M]. Columbus: American Ceramic Society, 1964: 3099-7260.
30 黄琼珠, 路贵民, 汪瑾, 等. MgCl2·6H2O热分解机理的研究[J]. 无机材料学报, 2010, 25(3): 306-310.
Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanism of MgCl2·6H2O[J]. Journal of Inorganic Materials, 2010, 25(3): 306-310.
31 陈运生. 物理化学分析[M]. 北京: 高等教育出版社, 1987: 383-385.
Chen Y S. Physical-Chemical Analysis[M]. Beijing: Higher Education Press, 1987: 383-385.
[1] 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
[2] 张怡洁, 刘星, 陈振武, 张晓春, 周勇, 丘建栋, 顾文波, 马涛. 分布式光伏储能系统的设计方法及运行特性[J]. 化工学报, 2021, 72(S1): 503-511.
[3] 张学平, 崔瑞芝, 桑世华. NaBr-CaBr2-H2O和KBr-CaBr2-H2O三元体系273.15 K相平衡实验及计算[J]. 化工学报, 2021, 72(9): 4479-4486.
[4] 刘洋, AYUB Iqra, 杨福胜, 吴震, 张早校. 基于金属氢化物高温蓄热的氢热耦合传递机理[J]. 化工学报, 2021, 72(9): 4607-4615.
[5] 王宪, 赵延兴, 董学强, 陈晓刚, 公茂琼. 甲烷二元体系的固液相平衡预测[J]. 化工学报, 2021, 72(8): 4009-4018.
[6] 高剑晨, 赵炳晨, 何峰, 李廷贤. 六水硝酸镁相变储热复合材料改性制备及储/放热性能研究[J]. 化工学报, 2021, 72(6): 3328-3337.
[7] 宋江涛, 袁菲, 余艳, 郭亚飞, 邓天龙. 四元体系LiB5O8 + NaB5O8 + KB5O8 + H2O在298.15 K实验与理论预测相平衡研究[J]. 化工学报, 2021, 72(6): 3179-3187.
[8] 李丹, 孙帅琦, 张涛, 赵一慧, 孟令宗, 郭亚飞, 邓天龙. 五元体系HCl-NaCl-CaCl2-H3BO3-H2O在298.15 K的Pitzer模型及其应用研究[J]. 化工学报, 2021, 72(6): 3160-3169.
[9] 罗军, 王林, 黄琴, 任思颖, 于旭东, 曾英. CsCl-PEG8000-H2O三元体系288.2、298.2、308.2 K相平衡测定[J]. 化工学报, 2021, 72(6): 3140-3148.
[10] 李栋婵, 王嘉宇, 王士强. 四元体系(Li+, Mg2+//Cl-, borate-H2O)308.15 K相平衡与相图研究[J]. 化工学报, 2021, 72(6): 3170-3178.
[11] 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668.
[12] 黄琴, 于旭东, 李茂兰, 郑洪, 曾英. 308.2 K三元体系KCl+PEG10000/20000+H2O相平衡及热力学计算[J]. 化工学报, 2021, 72(4): 1895-1905.
[13] 张秦意, 杨晓宏, 邓洪玲, 胡俊虎, 田瑞. 基于响应面法光热-光电膜蒸馏系统优化研究[J]. 化工学报, 2021, 72(4): 2156-2166.
[14] 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
[15] 于程远, 吴金奎, 周利, 吉旭, 戴一阳, 党亚固. 基于深度学习预测有机光伏电池能量转换效率[J]. 化工学报, 2021, 72(3): 1487-1495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤艳峰,张淑芬,杨锦宗. 在NaOH-烯丙基氯-DMSO体系中合成烯丙基蔗糖的新方法[J]. CIESC Journal, 2005, 13(6): 835 -836 .
[2] 闫平祥, 蓝兴英, 徐春明, 高金森. RFCC沉降器内油浆气化率的初步研究[J]. CIESC Journal, 2007, 15(3): 315 -319 .
[3] 许志明, 王宗贤, L. S. Kotlyar, K. H. Chung. Syncrude焦化重瓦斯油中甲苯不溶物的分离[J]. CIESC Journal, 2003, 11(6): 747 -750 .
[4] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[5] 宋蔷, 越光男, 定方正毅. 采用数值模拟方法研究同时氧化烟气中NO和SO2的可行性添加剂[J]. CIESC Journal, 2003, 11(5): 531 -535 .
[6] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[7] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[8] 王紫色, 许淳淳, 曹霞, 徐奔. 仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究[J]. CIESC Journal, 2007, 15(3): 433 -438 .
[9] 刘会娥, 魏飞, 杨艳辉, 金涌. 内构件存在时提升管内流动及颗粒混合行为研究

[J]. CIESC Journal, 2003, 11(4): 371 -376 .
[10] 孙贺东, 刘磊, 周芳德, 高承泰. 多层合采油藏最大有效井径数学模型及精确解[J]. CIESC Journal, 2003, 11(5): 550 -554 .