化工学报 ›› 2023, Vol. 74 ›› Issue (2): 666-673.DOI: 10.11949/0438-1157.20221326
高靖博1(), 孙强1(), 李青2, 王逸伟3, 郭绪强3
收稿日期:
2022-10-08
修回日期:
2023-01-04
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
孙强
作者简介:
高靖博(1996—),男,博士研究生,gaobuoy@163.com基金资助:
Jingbo GAO1(), Qiang SUN1(), Qing LI2, Yiwei WANG3, Xuqiang GUO3
Received:
2022-10-08
Revised:
2023-01-04
Online:
2023-02-05
Published:
2023-03-21
Contact:
Qiang SUN
摘要:
工业中常见的含氢气体往往含有较多的轻烃,而不同轻烃组成的变化能够引起水合物结构类型的转变,这也是影响水合物热力学模型预测精度的重要原因之一。因此,本文首先针对轻烃混合气体,在Chen-Guo水合物模型中引入新的水合物结构参数(
中图分类号:
高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673.
Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation[J]. CIESC Journal, 2023, 74(2): 666-673.
组成 | 温度/K | 组数 | 绝对平均相对误差/% | 文献 |
---|---|---|---|---|
甲烷(CH4) | 273~287 | 9 | 1.50 | [ |
乙烷(C2H6) | 274.8~283.1 | 15 | 0.78 | [ |
丙烷(C3H8) | 276~280.2 | 10 | 2.70 | [ |
CH4 + C2H6 | 273~287 | 32 | 4.81 | [ |
CH4 + C3H8 | 274.8~283.1 | 29 | 3.40 | [ |
C2H6 + C3H8 | 276~280.2 | 36 | 6.38 | [ |
H2 + CH4 | 274.3~278.3 | 10 | 4.57 | [ |
H2 + C3H8 | 274.2~278.3 | 14 | 7.78 | [ |
表1 Chen-Guo模型预测水合物相平衡结果
Table 1 The prediction results of Chen-Guo model for hydrate equilibrium
组成 | 温度/K | 组数 | 绝对平均相对误差/% | 文献 |
---|---|---|---|---|
甲烷(CH4) | 273~287 | 9 | 1.50 | [ |
乙烷(C2H6) | 274.8~283.1 | 15 | 0.78 | [ |
丙烷(C3H8) | 276~280.2 | 10 | 2.70 | [ |
CH4 + C2H6 | 273~287 | 32 | 4.81 | [ |
CH4 + C3H8 | 274.8~283.1 | 29 | 3.40 | [ |
C2H6 + C3H8 | 276~280.2 | 36 | 6.38 | [ |
H2 + CH4 | 274.3~278.3 | 10 | 4.57 | [ |
H2 + C3H8 | 274.2~278.3 | 14 | 7.78 | [ |
甲烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
1.6 | 283.9~286.6 | 3 | 1.13 | 1 |
4.7 | 279.4~287.6 | 4 | 1.26 | 1 |
17.7 | 281.6~287.0 | 5 | 0.14 | 1 |
56.4 | 274.8~283.2 | 4 | 1.20 | 0 |
表2 (CH4 + C2H6 + H2O)体系的水合物相平衡(Lw + H +V)预测结果(Ⅰ)[10]
Table 2 The prediction results of hydrate phase equilibrium (Lw + H +V) for (CH4 + C2H6 + H2O) system(Ⅰ)[10]
甲烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
1.6 | 283.9~286.6 | 3 | 1.13 | 1 |
4.7 | 279.4~287.6 | 4 | 1.26 | 1 |
17.7 | 281.6~287.0 | 5 | 0.14 | 1 |
56.4 | 274.8~283.2 | 4 | 1.20 | 0 |
甲烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
90.4 | 274.8 | 1.52 | 1.52 | 0.39 | 0.85 |
277.6 | 2.10 | 2.09 | 0.48 | 0.95 | |
280.4 | 2.89 | 2.81 | 2.87 | 1 | |
283.2 | 3.97 | 3.70 | 6.66 | 1 | |
95.0 | 274.8 | 1.84 | 1.85 | 0.22 | 0.80 |
277.6 | 2.53 | 2.51 | 0.95 | 0.85 | |
280.4 | 3.45 | 3.46 | 0.32 | 0.95 | |
283.2 | 4.77 | 4.69 | 1.76 | 1 | |
97.1 | 274.8 | 2.16 | 2.16 | 0.23 | 0.85 |
277.6 | 2.96 | 2.94 | 0.71 | 0.90 | |
280.4 | 4.03 | 4.07 | 0.97 | 1 | |
平均相对误差 | 1.20 |
表3 (CH4 + C2H6 + H2O)体系的水合物相平衡(Lw + H +V)预测结果(Ⅱ)[10]
Table 3 The prediction results of hydrate phase equilibrium (Lw + H +V) for (CH4 + C2H6 + H2O) system(Ⅱ)[10]
甲烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
90.4 | 274.8 | 1.52 | 1.52 | 0.39 | 0.85 |
277.6 | 2.10 | 2.09 | 0.48 | 0.95 | |
280.4 | 2.89 | 2.81 | 2.87 | 1 | |
283.2 | 3.97 | 3.70 | 6.66 | 1 | |
95.0 | 274.8 | 1.84 | 1.85 | 0.22 | 0.80 |
277.6 | 2.53 | 2.51 | 0.95 | 0.85 | |
280.4 | 3.45 | 3.46 | 0.32 | 0.95 | |
283.2 | 4.77 | 4.69 | 1.76 | 1 | |
97.1 | 274.8 | 2.16 | 2.16 | 0.23 | 0.85 |
277.6 | 2.96 | 2.94 | 0.71 | 0.90 | |
280.4 | 4.03 | 4.07 | 0.97 | 1 | |
平均相对误差 | 1.20 |
乙烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
28.0 | 276~278 | 3 | 2.24 | 0 |
44.3 | 275.9~277.4 | 5 | 2.06 | 0 |
45.9 | 275.8~278 | 5 | 1.96 | 0 |
65.8 | 273.9~277.6 | 5 | 0.76 | 0 |
74.0 | 274.5~277.1 | 5 | 3.03 | 0 |
表4 (C2H6 + C3H8 + H2O)体系的水合物相平衡(Lw + H +V)预测结果(Ⅰ)[15]
Table 4 The prediction results of hydrate phase equilibrium (Lw + H +V) for (C2H6 + C3H8 + H2O) system(Ⅰ)[15]
乙烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
28.0 | 276~278 | 3 | 2.24 | 0 |
44.3 | 275.9~277.4 | 5 | 2.06 | 0 |
45.9 | 275.8~278 | 5 | 1.96 | 0 |
65.8 | 273.9~277.6 | 5 | 0.76 | 0 |
74.0 | 274.5~277.1 | 5 | 3.03 | 0 |
乙烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
81.4 | 273.1 | 0.54 | 0.53 | 1.54 | 0 |
273.8 | 0.64 | 0.62 | 2.78 | 0 | |
274.3 | 0.66 | 0.65 | 1.36 | 0.09 | |
274.7 | 0.71 | 0.71 | 0 | 0.09 | |
276.8 | 0.94 | 0.93 | 1.49 | 0.28 | |
278.9 | 1.21 | 1.20 | 0.77 | 0.43 | |
279.6 | 1.30 | 1.29 | 0.62 | 0.48 | |
85.0 | 275.7 | 0.74 | 0.77 | 3.69 | 0.4 |
277.2 | 0.90 | 0.93 | 3.00 | 0.49 | |
280.6 | 1.37 | 1.39 | 1.33 | 0.62 | |
85.7 | 279.7 | 1.19 | 1.19 | 0.08 | 0.63 |
280.2 | 1.30 | 1.29 | 0.35 | 0.63 | |
平均相对误差 | 1.82 |
表5 (C2H6 + C3H8 + H2O)体系的水合物相平衡(Lw + H +V)预测结果(Ⅱ)[15]
Table 5 The prediction results of hydrate phase equilibrium (Lw + H +V) for (C2H6 + C3H8 + H2O) system(Ⅱ)[15]
乙烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
81.4 | 273.1 | 0.54 | 0.53 | 1.54 | 0 |
273.8 | 0.64 | 0.62 | 2.78 | 0 | |
274.3 | 0.66 | 0.65 | 1.36 | 0.09 | |
274.7 | 0.71 | 0.71 | 0 | 0.09 | |
276.8 | 0.94 | 0.93 | 1.49 | 0.28 | |
278.9 | 1.21 | 1.20 | 0.77 | 0.43 | |
279.6 | 1.30 | 1.29 | 0.62 | 0.48 | |
85.0 | 275.7 | 0.74 | 0.77 | 3.69 | 0.4 |
277.2 | 0.90 | 0.93 | 3.00 | 0.49 | |
280.6 | 1.37 | 1.39 | 1.33 | 0.62 | |
85.7 | 279.7 | 1.19 | 1.19 | 0.08 | 0.63 |
280.2 | 1.30 | 1.29 | 0.35 | 0.63 | |
平均相对误差 | 1.82 |
项目 | 直径/0.1 nm | 直径比 |
---|---|---|
氢气 | 2.3 | |
sⅠ水合物小孔 | 3.95 | 0.58 |
sⅡ水合物小孔 | 3.91 | 0.59 |
表6 氢气与sⅠ型和sⅡ型水合物小孔的直径比
Table 6 Diameter ratio of hydrogen to sⅠ and sⅡ hydrates
项目 | 直径/0.1 nm | 直径比 |
---|---|---|
氢气 | 2.3 | |
sⅠ水合物小孔 | 3.95 | 0.58 |
sⅡ水合物小孔 | 3.91 | 0.59 |
X/Pa | Y/K | Z/K | |
---|---|---|---|
H2 | 5.64×10-11 | 120.78 | 253.10 |
表7 H2的Antonie表达式参数[25]
Table 7 Antonie expression parameter of H2[25]
X/Pa | Y/K | Z/K | |
---|---|---|---|
H2 | 5.64×10-11 | 120.78 | 253.10 |
分子种类 | I型水合物 | Ⅱ型水合物 | ||||
---|---|---|---|---|---|---|
A×10-9/MPa | B/K | C/K | A×10-22/MPa | B/K | C/K | |
H2 | 0.1 | 0 | 0 | 1 | 0 | 0 |
CH4 | 1584.4 | -6591.43 | 27.04 | 5.2602 | -13088 | 4.08 |
C2H6 | 47.500 | -5465.60 | 57.93 | 0.0399 | -11491 | 30.4 |
C3H8 | — | — | — | 4.1023 | -13106 | 30.2 |
表8 f0(T)的Antoine常数值[27-28]
Table 8 Antoine constants of f0(T)[27-28]
分子种类 | I型水合物 | Ⅱ型水合物 | ||||
---|---|---|---|---|---|---|
A×10-9/MPa | B/K | C/K | A×10-22/MPa | B/K | C/K | |
H2 | 0.1 | 0 | 0 | 1 | 0 | 0 |
CH4 | 1584.4 | -6591.43 | 27.04 | 5.2602 | -13088 | 4.08 |
C2H6 | 47.500 | -5465.60 | 57.93 | 0.0399 | -11491 | 30.4 |
C3H8 | — | — | — | 4.1023 | -13106 | 30.2 |
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 4.57 | 2.57 | ||||
36.18 | 274.3 | 4.46 | 4.57 | 2.38 | 4.45 | 0.12 |
275.3 | 4.85 | 5.09 | 4.87 | 4.95 | 1.96 | |
276.3 | 5.32 | 5.67 | 6.48 | 5.49 | 3.17 | |
277.3 | 5.88 | 6.31 | 7.36 | 6.10 | 3.66 | |
278.3 | 6.63 | 7.02 | 5.82 | 6.77 | 2.12 | |
22.13 | 274.3 | 3.72 | 3.70 | 0.59 | 3.65 | 1.86 |
275.4 | 4.03 | 4.16 | 3.15 | 4.05 | 0.57 | |
276.2 | 4.36 | 4.53 | 3.83 | 4.50 | 3.18 | |
277.2 | 4.75 | 5.04 | 6.08 | 5.00 | 5.17 | |
278.2 | 5.34 | 5.61 | 5.09 | 5.55 | 3.91 |
表9 (H2 + CH4 + H2O)体系的水合物相平衡(Lw + H +V)预测结果[16]
Table 9 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + CH4 + H2O) system[16]
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 4.57 | 2.57 | ||||
36.18 | 274.3 | 4.46 | 4.57 | 2.38 | 4.45 | 0.12 |
275.3 | 4.85 | 5.09 | 4.87 | 4.95 | 1.96 | |
276.3 | 5.32 | 5.67 | 6.48 | 5.49 | 3.17 | |
277.3 | 5.88 | 6.31 | 7.36 | 6.10 | 3.66 | |
278.3 | 6.63 | 7.02 | 5.82 | 6.77 | 2.12 | |
22.13 | 274.3 | 3.72 | 3.70 | 0.59 | 3.65 | 1.86 |
275.4 | 4.03 | 4.16 | 3.15 | 4.05 | 0.57 | |
276.2 | 4.36 | 4.53 | 3.83 | 4.50 | 3.18 | |
277.2 | 4.75 | 5.04 | 6.08 | 5.00 | 5.17 | |
278.2 | 5.34 | 5.61 | 5.09 | 5.55 | 3.91 |
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 11.45 | 2.22 | ||||
87.22 | 276.2 | 2.58 | 2.74 | 6.09 | 2.50 | 3.25 |
277.3 | 3.20 | 3.66 | 14.22 | 3.23 | 0.99 | |
278.3 | 4 | 4.83 | 20.70 | 4.12 | 2.90 | |
81.64 | 275.2 | 1.44 | 1.46 | 1.67 | 1.37 | 4.68 |
276.3 | 1.74 | 1.93 | 10.80 | 1.78 | 2.05 | |
277.3 | 2.22 | 2.50 | 12.57 | 2.25 | 1.33 | |
278.1 | 2.72 | 3.10 | 14.08 | 2.73 | 0.32 |
表10 (H2 + C3H8 + H2O)体系的水合物相平衡(Lw + H +V)预测结果[16]
Table 10 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + C3H8 + H2O) system[16]
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 11.45 | 2.22 | ||||
87.22 | 276.2 | 2.58 | 2.74 | 6.09 | 2.50 | 3.25 |
277.3 | 3.20 | 3.66 | 14.22 | 3.23 | 0.99 | |
278.3 | 4 | 4.83 | 20.70 | 4.12 | 2.90 | |
81.64 | 275.2 | 1.44 | 1.46 | 1.67 | 1.37 | 4.68 |
276.3 | 1.74 | 1.93 | 10.80 | 1.78 | 2.05 | |
277.3 | 2.22 | 2.50 | 12.57 | 2.25 | 1.33 | |
278.1 | 2.72 | 3.10 | 14.08 | 2.73 | 0.32 |
甲烷摩尔 分数/% | 乙烷摩尔 分数/% | 丙烷摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|---|---|
平均相对误差/% | 7.92 | 2.25 | ||||||
6.25 | 3.55 | 6.00 | 279.55 | 4.73 | 5.05 | 6.77 | 4.80 | 1.56 |
280.25 | 5.32 | 5.65 | 6.20 | 5.35 | 0.65 | |||
281.35 | 6.33 | 6.72 | 6.14 | 6.33 | 0.01 | |||
281.95 | 7.11 | 7.37 | 3.66 | 6.92 | 2.62 | |||
282.75 | 8.05 | 8.34 | 3.60 | 7.78 | 3.29 | |||
283.35 | 8.54 | 9.134 | 6.96 | 8.53 | 0.17 | |||
283.95 | 9.72 | 10.01 | 2.98 | 9.31 | 4.22 | |||
6.18 | 3.35 | 8.00 | 279.05 | 3.56 | 3.98 | 11.71 | 3.78 | 6.08 |
279.75 | 4.13 | 4.48 | 8.36 | 4.23 | 2.49 | |||
280.35 | 4.45 | 4.95 | 11.24 | 4.65 | 4.60 | |||
281.35 | 5.32 | 5.83 | 9.68 | 5.45 | 2.51 | |||
281.95 | 5.82 | 6.44 | 10.65 | 5.99 | 2.92 | |||
282.35 | 6.23 | 6.87 | 10.24 | 6.37 | 2.28 | |||
282.95 | 6.95 | 7.56 | 8.78 | 6.99 | 0.55 | |||
283.35 | 7.35 | 8.06 | 9.66 | 7.43 | 1.05 | |||
283.75 | 7.82 | 8.60 | 9.97 | 7.90 | 0.96 |
表11 (H2 + CH4 + C2H6 + C3H8 + H2O)体系的水合物相平衡(Lw + H +V)预测结果
Table 11 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + CH4 + C2H6 + C3H8 + H2O) system
甲烷摩尔 分数/% | 乙烷摩尔 分数/% | 丙烷摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|---|---|
平均相对误差/% | 7.92 | 2.25 | ||||||
6.25 | 3.55 | 6.00 | 279.55 | 4.73 | 5.05 | 6.77 | 4.80 | 1.56 |
280.25 | 5.32 | 5.65 | 6.20 | 5.35 | 0.65 | |||
281.35 | 6.33 | 6.72 | 6.14 | 6.33 | 0.01 | |||
281.95 | 7.11 | 7.37 | 3.66 | 6.92 | 2.62 | |||
282.75 | 8.05 | 8.34 | 3.60 | 7.78 | 3.29 | |||
283.35 | 8.54 | 9.134 | 6.96 | 8.53 | 0.17 | |||
283.95 | 9.72 | 10.01 | 2.98 | 9.31 | 4.22 | |||
6.18 | 3.35 | 8.00 | 279.05 | 3.56 | 3.98 | 11.71 | 3.78 | 6.08 |
279.75 | 4.13 | 4.48 | 8.36 | 4.23 | 2.49 | |||
280.35 | 4.45 | 4.95 | 11.24 | 4.65 | 4.60 | |||
281.35 | 5.32 | 5.83 | 9.68 | 5.45 | 2.51 | |||
281.95 | 5.82 | 6.44 | 10.65 | 5.99 | 2.92 | |||
282.35 | 6.23 | 6.87 | 10.24 | 6.37 | 2.28 | |||
282.95 | 6.95 | 7.56 | 8.78 | 6.99 | 0.55 | |||
283.35 | 7.35 | 8.06 | 9.66 | 7.43 | 1.05 | |||
283.75 | 7.82 | 8.60 | 9.97 | 7.90 | 0.96 |
1 | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
Zhou Y, Zhou H J, Xu C M. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. | |
2 | 龙庆兴, 许思维. 重油加氢技术特点和发展趋势研究[J]. 中国石油和化工标准与质量, 2020, 40(14): 247-248. |
Long Q X, Xu S W. Study on characteristics and development trend of heavy oil hydrogenation technology[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(14): 247-248. | |
3 | 陈波, 刘爱贤, 孙强, 等. 柴油加氢尾气中氢气的水合物法回收工业侧线试验[J]. 化工进展, 2022, 41(6): 2924-2930. |
Chen B, Liu A X, Sun Q, et al. Industrial side-stream trial of hydrogen recovery from diesel hydrogenation tail gas via hydrate method[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2924-2930. | |
4 | Shang H, Bai H H, Li X M, et al. Site trials of methane capture from low-concentration coalbed methane drainage wells using a mobile skid-mounted vacuum pressure swing adsorption system[J]. Separation and purification Technology, 2022, 295: 121271. |
5 | 李贵贤, 王可, 王健, 等. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
Li G X, Wang K, Wang J, et al. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant[J]. CIESC Journal, 2022, 73(11): 5065-5077. | |
6 | 于飞. 膜分离及深冷分离技术在聚丙烯装置的应用[J]. 现代化工, 2020, 40(3): 217-220. |
Yu F. Application of membrane-cryogenic hybrid separation technology in polypropylene plant[J]. Modern Chemical Industry, 2020, 40(3): 217-220. | |
7 | 薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2021, 40(2): 722-735. |
Xue Q, Wang X L, Li Z Z, et al. Research progresses in hydrate based technologies and processes[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. | |
8 | Jeong K, Metaxas P J, Helberg A, et al. Gas hydrate nucleation in acoustically levitated water droplets[J]. Chemical Engineering Journal, 2022, 433: 133494. |
9 | Chen X, Li H Z. New pragmatic strategies for optimizing Kihara potential parameters used in van der Waals-Platteeuw hydrate model[J]. Chemical Engineering Science, 2022, 248: 117213. |
10 | Parrish W R, Prausnitz J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1): 26-35. |
11 | Ng H J, Robinson D B. The prediction of hydrate formation in condensed systems[J]. AIChE Journal, 1977, 23(4): 477-482. |
12 | John V T, Papadopoulos K D, Holder G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 1985, 31(2): 252-259. |
13 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
14 | Wang L B, Cui J L, Sun C Y, et al. Review on the applications and modifications of the Chen-Guo model for hydrate formation and dissociation[J]. Energy & Fuels, 2021, 35(9): 2936-2964. |
15 | Holder G D, Hand J H. Multiple-phase equilibria in hydrates from methane, ethane, propane and water mixtures[J]. AIChE Journal, 1982, 28(3): 440-447. |
16 | Ng H J, Robinson D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(4): 293-298. |
17 | Sloan E D, Subramanian S, Matthews P N, et al. Quantifying hydrate formation and kinetic inhibition[J]. Industrial & Engineering Chemistry Research, 1998, 37: 3124-3132. |
18 | Gao J B, Sun Q, Xu Z, et al. Modelling the hydrate formation condition in consideration of hydrates structure transformation[J]. Chemical Engineering Science, 2022, 251: 117487. |
19 | Zheng R Y, Li X L, Negahban S. Molecular-level insights into the structure stability of CH4-C2H6 hydrates[J]. Chemical Engineering Science, 2022, 247: 117039. |
20 | Subramanian S Jr, Kini R A, Des S F, et al. Evidence of structure Ⅱ hydrate formation from methane + ethane mixtures[J]. Chemical Engineering Science, 2000, 55(11): 1981-1999. |
21 | Hendriks E M, Edmonds B, Moorwood R A S, et al. Hydrate structure stability in simple and mixed hydrates[J]. Fluid Phase Equilibria, 1996, 117(1/2): 193-200. |
22 | 张世喜, 陈光进, 杨兰英, 等.含氢气体水合物生成条件的测定和计算[J].化工学报, 2003, 54(1): 24-28. |
Zhang S X, Chen G J, Yang L Y, et al. Measurement and calculation of hydrate formation conditions for gas mixtures containing hydrogen[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 24-28. | |
23 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
24 | Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chemical Engineering Science, 1982, 37(3): 463-473. |
25 | 袁高强. 水合物-膜法耦合回收加氢尾气中氢气的基础研究[D]. 北京: 中国石油大学(北京), 2020. |
Yuan G Q. Basic study on the recovery of hydrogen from hydrogenation gas by hydrate-membrane coupling method[D]. Beijing: China University of Petroleum, 2020. | |
26 | Sugahara T, Murayama S, Hashimoto S. Phase equilibria for H2 + CO2 + H2O system containing gas hydrates[J]. Fluid Phase Equilibria, 2005, 233(2): 190-193. |
27 | 刘伟. 茂名石化油加氢尾气水合物提浓技术研究[D]. 北京: 中国石油大学(北京), 2017. |
Li W. Experimental study on the separation of Maoming petrochemical diesel hydrogenation tail via hydrate separation technique[D]. Beijing: China University of Petroleum, 2017. | |
28 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
29 | 陈光进, 马庆兰, 郭天民. 气体水合物生成机理和热力学模型的建立[J]. 化工学报, 2000, 51(5): 626-631. |
Chen G J, Ma Q L, Guo T M. A new mechanism for hydrate formation and development of thermodynamic model[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 626-631. | |
30 | 陈波. 水合物法回收柴油加氢尾气工业侧线试验研究[D]. 北京: 中国石油大学(北京), 2021. |
Chen B. Industrial side-stream trial study for recovery of hydrogen from diesel hydrogenation tail gas via hydrate method[D]. Beijing: China University of Petroleum, 2021. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 379
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||