化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2657-2668.doi: 10.11949/0438-1157.20210084

• 催化、动力学与反应器 • 上一篇    下一篇

三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究

忻睦迪(),邢恩会()   

  1. 中国石油化工集团有限公司石油化工科学研究院,北京 100083
  • 收稿日期:2021-01-13 修回日期:2021-03-24 出版日期:2021-05-05 发布日期:2021-05-05
  • 通讯作者: 邢恩会 E-mail:xinmd.ripp@sinopec.com;xingeh.ripp@sinopec.com
  • 作者简介:忻睦迪(1985—),男,博士研究生,高级工程师,xinmd.ripp@sinopec.com

Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking

XIN Mudi(),XING Enhui()   

  1. Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
  • Received:2021-01-13 Revised:2021-03-24 Published:2021-05-05 Online:2021-05-05
  • Contact: XING Enhui E-mail:xinmd.ripp@sinopec.com;xingeh.ripp@sinopec.com

摘要:

以三甲基膦(TMP)为前体对ZSM-5分子筛进行磷改性,以提升其水热稳定性,然后再分别通过等体积浸渍法引入Ga2O3或ZnO,制备得到磷和金属氧化物复合改性的ZSM-5分子筛。利用X射线衍射(XRD)、固体核磁(MAS NMR)、氨程序升温脱附(NH3-TPD)以及吡啶吸附傅里叶变换红外光谱(Py-FTIR)等表征手段系统地研究了磷和金属氧化物复合改性对ZSM-5分子筛的物化性质、P和Al相互作用以及酸性的影响。并以正十四烷裂解为探针反应,研究磷和金属氧化物复合改性对ZSM-5分子筛催化裂解性能的影响。研究结果表明以三甲基膦为前体对ZSM-5分子筛改性,再引入金属氧化物的复合改性方式制备的催化裂解催化剂不仅具有较高的酸性保留度,具有较高的催化裂解活性,也同时保留了金属氧化物中心的脱氢作用,从而提升了C2=~C4=收率及选择性,同时降低了积炭的生成。

关键词: 催化裂解, ZSM-5, 水热稳定性, 磷改性, 三甲基膦, 复合改性

Abstract:

With trimethylphosphine (TMP) as the precursor, ZSM-5 was firstly modified to improve its hydrothermal stability, and then subject to impregnation of Ga2O3 or ZnO to prepared phosphorus and metal oxide modified ZSM-5 zeolites. The statuses of metal oxides and phosphorus species, as well as ZSM-5 matrix and their interaction were systematically investigated by XRD, MAS NMR, NH3-TPD and Py-FTIR spectroscopy. The cleavage of n-tetradecane was used as a probe reaction to study the effect of phosphorus and metal oxide compound modification on the catalytic cracking performance of ZSM-5. Via such trimethylphosphine and metal oxide modification, more acids were preserved to show better cracking performance, as well as higher light olefin yield and selectivity with lower coke yield.

Key words: catalytic cracking, ZSM-5, hydrothermal stability, P modification, trimethylphosphine, co-modifiction

中图分类号: 

  • TE 624.9

表1

实验所用原料及规格"

原料及试剂化学式规格生产厂家
ZSM-5分子筛n(SiO2)∶n(Al2O3) = 43工业级中国石化催化剂公司齐鲁分公司
硝酸镓Ga(NO3)3·nH2O分析纯阿法埃莎(中国)化学有限公司
六水合硝酸锌Zn(NO3)2·6H2O分析纯国药集团
磷酸H3PO485%北京化工厂
三甲基膦C3H9P分析纯阿法埃莎(中国)化学有限公司
正十四烷C14H30≥ 99%阿法埃莎(中国)化学有限公司

图1

纯烃微反评价装置流程1—注射计量表;2—六通阀;3—驻油瓶;4—反应炉;5—反应管;6—收油瓶;7—冷阱;8—氧化炉;9—红外CO2气体分析仪;10—集气瓶;11—量液瓶;12—电子天平;13—气相色谱"

图2

TMP、金属氧化物改性ZSM-5分子筛的XRD谱图(O代表正文晶系,M代表单斜晶系)"

表2

焙烧后与水热老化后TMP、金属氧化物改性ZSM-5分子筛的相对结晶度"

样品相对结晶度(焙烧后)/%相对结晶度(水热老化后)/%相对结晶保留度/%
Z93.778.984.2
Z-TMP84.183.098.7
Z-TMP-G83.081.598.2
Z-TMP-Z80.068.986.1

表3

焙烧后与水热老化后TMP、金属氧化物改性ZSM-5分子筛的化学组成"

样品焙烧后水热老化后
SiO2/Al2O3P2O5/Al2O3SiO2/MxOySiO2/Al2O3P2O5/Al2O3SiO2/MxOy
Z-TMP42.10.9842.70.89
Z-TMP-G42.70.94195.044.10.93207.4
Z-TMP-Z43.20.99190.343.40.97193.5

图3

焙烧后与水热老化后TMP、金属氧化物改性ZSM-5分子筛的TEM照片"

图4

焙烧后与水热老化后TMP、金属氧化物改性ZSM-5分子筛中元素分布"

图5

TMP、金属氧化物改性ZSM-5分子筛在77 K时的N2吸脱附曲线"

表4

不同改性方法制备的Zn/P/ZSM-5分子筛的比表面积及孔结构"

样品焙烧后水热老化后
比表面积/(m2/g)孔体积/(cm3/g)比表面积/(m2/g)孔体积 / (cm3/g)
SBETSextSmicroVtotalVmicroVmesoSBETSextSmicroVtotalVmicroVmeso
Z420.035.2384.80.2420.1980.044294.015.8278.20.1560.1310.025
Z-TMP254.021.3232.70.1370.1120.025307.716.5291.20.1600.1370.023
Z-TMP-G244.420.4224.00.1320.1050.027307.816.1291.70.1600.1380.022
Z-TMP-Z243.318.5224.80.1300.1050.025259.714.3245.40.1410.1160.025

图6

TMP、金属氧化物改性ZSM-5分子筛的27Al MAS NMR谱图"

图7

TMP、金属氧化物改性ZSM-5分子筛的31P MAS NMR谱图"

图8

TMP、金属氧化物改性ZSM-5分子筛水热老化后的NH3-TPD谱图"

表5

TMP、金属氧化物改性ZSM-5分子筛水热老化后的酸量(NH3-TPD)"

样品弱酸量/ (μmol/g)中强酸量/ (μmol/g)强酸量/ (μmol/g)总酸量/ (μmol/g)
Z-TMP-HT62.8671.7619.37154.00
Z-TMP-G-HT66.1770.9528.84165.96
Z-TMP-Z-HT78.7871.3820.62170.78

表6

TMP、金属氧化物改性ZSM-5分子筛水热老化后Py-FTIR表征的酸量"

样品弱酸量/(μmol/g)中强酸量/(μmol/g)总酸量/(μmol/g)
LBLBLB
Z-TMP-HT4.37.45.28.79.516.1
Z-TMP-G-HT6.410.95.97.212.318.1
Z-TMP-Z-HT9.38.04.08.413.316.4

表7

TMP、金属氧化物改性ZSM-5分子筛的正十四烷催化裂解反应产物分布及其选择性"

项目Z-TMP-HTZ-TMP-G-HTZ-TMP-Z-HTZP-HTZP-G-HTZP-Z-HT[26]
转化率/%93.998.497.597.387.397.8
收率/%(质量)
H20.060.060.150.070.070.12
CH40.140.140.200.120.120.17
C2H60.480.490.510.430.440.51
C2H45.306.045.894.874.425.31
C3H810.6512.6112.0611.4710.3612.44
C3H618.0019.5719.8317.4515.8716.27
C4H109.0911.6511.3011.539.7511.78
C4H813.6814.6415.2512.6911.0610.84
C5H126.556.616.0512.119.6711.33
C5H103.512.502.342.152.792.43
C6H141.331.331.221.241.351.29
C6H121.681.541.571.561.821.42
C7H160.650.720.700.730.730.65
C7H140.520.780.800.730.700.69
BTX2.162.482.572.613.003.76
C2=~C4=+BTX39.1442.7243.5337.6234.3637.19
Coke2.893.164.425.913.235.49
选择性/%(质量)
H20.060.060.150.070.080.13
CH40.150.140.200.120.140.17
C2H60.510.490.530.440.500.52
C2H45.656.146.045.015.065.43
C3H811.3412.8112.3811.7911.8712.71
C3H619.1719.8820.3417.9318.1816.63
C4H109.6811.8311.6011.8511.1712.04
C4H814.5714.8815.6413.0412.6711.08
C5H126.986.726.2112.4411.0711.58
C5H103.742.542.402.213.192.48
C6H141.421.351.251.281.541.32
C6H121.791.571.611.602.081.45
C7H160.690.730.720.750.840.67
C7H140.550.790.820.750.800.71
BTX2.302.522.642.683.443.84
C2=~C4=+BTX41.6843.4144.6738.6639.3538.03
Coke3.083.224.536.073.705.61
1 Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17.
2 Chen N Y, Kaeding W W, Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. Journal of the American Chemical Society, 1979, 101(22): 6783-6784.
3 Degnan T F, Chitnis G K, Schipper P H. History of ZSM-5 fluid catalytic cracking additive development at Mobil[J]. Microporous and Mesoporous Materials, 2000, 35/36: 245-252.
4 Lischke G, Eckelt R, Jerschkewitz H G, et al. Spectroscopic and physicochemical characterization of P-modified H-ZSM-5[J]. Journal of Catalysis, 1991, 132(1): 229-243.
5 Caeiro G, Magnoux P, Lopes J M, et al. Stabilization effect of phosphorus on steamed H-MFI zeolites[J]. Applied Catalysis A: General, 2006, 314(2): 160-171.
6 Blasco T, Corma A, Martínez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277.
7 Zhuang J Q, Ma D, Yang G, et al. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. Journal of Catalysis, 2004, 228(1): 234-242.
8 van der Bij H E, Weckhuysen B M. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7406-7428.
9 Wang X N, Zhao Z, Xu C M, et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. Journal of Rare Earths, 2007, 25(3): 321-328.
10 Hartford R W, Kojima M, O'Connor C T. Lanthanum ion exchange on HZSM-5[J]. Industrial & Engineering Chemistry Research, 1989, 28(12): 1748-1752.
11 Lu J Y, Zhao Z, Xu C M, et al. FeHZSM-5 molecular sieves—highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199-203.
12 Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction[J]. Applied Catalysis A: General, 2002, 230(1/2): 195-202.
13 Li Y N, Liu D, Liu S L, et al. Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites[J]. Journal of Natural Gas Chemistry, 2008, 17(1): 69-74.
14 Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts[J]. Catalysis Letters, 2002, 81(1/2): 83-88.
15 Li J W, Li T, Ma H F, et al. Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene[J]. Industrial & Engineering Chemistry Research, 2015, 54(6): 1796-1805.
16 Han D M, Sun N N, Liu J W, et al. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. Journal of Energy Chemistry, 2014, 23(4): 519-526.
17 Yoshimura Y, Kijima N, Hayakawa T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan, 2001, 4(2): 157-167.
18 Sendesi S M T, Towfighi J, Keyvanloo K. The effect of Fe, P and Si/Al molar ratio on stability of HZSM-5 catalyst in naphtha thermal-catalytic cracking to light olefins[J]. Catalysis Communications, 2012, 27: 114-118.
19 Valecillos J, Epelde E, Albo J, et al. Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications[J]. Catalysis Today, 2020, 348: 243-256.
20 Tsunoji N, Sonoda T, Furumoto Y, et al. Recreation of Brønsted acid sites in phosphorus-modified HZSM-5(Ga) by modification with various metal cations[J]. Applied Catalysis A: General, 2014, 481: 161-168.
21 Furumoto Y, Tsunoji N, Ide Y, et al. Conversion of ethanol to propylene over HZSM-5(Ga) co-modified with lanthanum and phosphorous[J]. Applied Catalysis A: General, 2012, 417/418: 137-144.
22 Qiao J, Wang J Q, Frenkel A I, et al. Methanol to aromatics: isolated zinc phosphate groups on HZSM-5 zeolite enhance BTX selectivity and catalytic stability[J]. RSC Advances, 2020, 10(10): 5961-5971.
23 Zhang J Y, Zhu X L, Zhang S H, et al. Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst[J]. Catalysis Science & Technology, 2019, 9(2): 316-326.
24 Xin M D, Xing E H, Ouyang Y, et al. Insight into interactions among P, Zn and ZSM-5 during bi-component modification on ZSM-5[J]. New Journal of Chemistry, 2020, 44(47): 20785-20796.
25 Vinek H, Rumplmayr G, Lercher J A. Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites[J]. Journal of Catalysis, 1989, 115(2): 291-300.
26 Xue N H, Olindo R, Lercher J A. Impact of forming and modification with phosphoric acid on the acid sites of HZSM-5[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15763-15770.
27 Nunan J, Cronin J, Cunningham J. Combined catalytic and infrared study of the modification of H-ZSM-5 with selected poisons to give high p-xylene selectivity[J]. Journal of Catalysis, 1984, 87(1): 77-85.
28 Rahman A, Lemay G, Adnot A, et al. Spectroscopic and catalytic study of P-modified ZSM-5[J]. Journal of Catalysis, 1988, 112(2): 453-463.
29 Zheng A M, Liu S B, Deng F. 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chemical Reviews, 2017, 117(19): 12475-12531.
30 Xin M D, Xing E H, Gao X Z, et al. Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 6970-6981.
[1] 王景效, 贺翔宇, 龚剑洪, 许建良, 刘海峰. 新型催化裂解快速流化床内颗粒浓度分布实验研究[J]. 化工学报, 2021, 72(8): 4104-4110.
[2] 李晓雪, 牛晓坡, 王庆法. 级孔Pt-Ni/ZSM-5对木质素衍生物加氢脱氧性能研究[J]. 化工学报, 2021, 72(5): 2626-2637.
[3] 张玉明, 纪德馨, 朱翰文, 万利锋, 张炜, 温宏炎, 岳君容. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615.
[4] 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
[5] 任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632.
[6] 杨珍, 曹景沛, 朱陈, 刘天龙, 赵小燕. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642.
[7] 刘美佳,王刚,张忠东,许顺年,王皓,党法璐,何盛宝. 碳五烷烃裂解制低碳烯烃反应性能的分析[J]. 化工学报, 2021, 72(10): 5172-5182.
[8] 李子祎,潘恩泽,王佳轩,鲁金明,杨建华. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256.
[9] 王维, 姜雪迎, 李悦, 苏丽萍, 邹昀, 童张法. 亲水型ZSM-5分子筛填充PVA膜及分离乙酸乙酯/水的应用[J]. 化工学报, 2020, 71(8): 3807-3818.
[10] 徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332.
[11] 朱林, 韩威, 李文松, 邬长城, 李芳, 薛伟, 王延吉. [BMIm]Br离子液体辅助HZSM-5催化乙酸环己酯高选择性水解反应[J]. 化工学报, 2020, 71(4): 1609-1617.
[12] 刘燕青, 胡听听, 鲁落义, 王维, 邹昀, 童张法. PDMS/ZSM-5膜的制备及渗透汽化分离水中乙酸正丁酯和乙酸乙酯[J]. 化工学报, 2020, 71(2): 843-853.
[13] 杨润农,余林,赵向云,杨晓波,高梓寒,傅广赢,姜久兴,练纬琳,刘武源,范群. 无模板法合成的Phi分子筛在NO选择性催化还原中的应用[J]. 化工学报, 2020, 71(12): 5578-5588.
[14] 马会霞,周峰,武光,傅杰,乔凯. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207.
[15] 高君安, 王伟, 张傑, 雷志刚, 史东军, 曲令多. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[3] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[4] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[5] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[6] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[7] 沈师孔, 李然家, 周吉萍, 余长春. 晶格氧用于轻烃的选择氧化[J]. CIESC Journal, 2003, 11(6): 649 -655 .
[8] 潘海华, 李啸风, 李浩然, 刘迪霞, 韩世钧. 双亲分子在油水界面的行为研究[J]. CIESC Journal, 2003, 11(4): 446 -451 .
[9] 占新民, 赵璇, AKANE Miyazaki, YOSHIO Nakano. 利用天然浓缩丹宁合成新型凝胶吸附剂通过表面沉淀去除水溶液中铅[J]. CIESC Journal, 2003, 11(4): 426 -430 .
[10] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .