化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2647-2656.DOI: 10.11949/0438-1157.20210076
董子超1(),吴玉2,张博风1,刘斯宝1,刘国柱1(
),赵杰2
收稿日期:
2021-01-12
修回日期:
2021-03-01
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
刘国柱
作者简介:
董子超(1995—),男,硕士,基金资助:
DONG Zichao1(),WU Yu2,ZHANG Bofeng1,LIU Sibao1,LIU Guozhu1(
),ZHAO Jie2
Received:
2021-01-12
Revised:
2021-03-01
Online:
2021-05-05
Published:
2021-05-05
Contact:
LIU Guozhu
摘要:
CO2加氢制备低碳烯烃是实现C1资源高值化利用的有效途径。为提高低碳烯烃选择性,以Fe-MOF为主体,对苯二甲酸为骨架配体,构建了金属比例可控的铁钴双金属催化剂(FeCo/MC),阐明了双金属的协同作用及金属比例对加氢性能的影响。发现Co的添加可以增加催化剂表面碱性位而显著地改善CO2吸附,促进铁的碳化并通过费托反应的CO消耗促进逆水煤气反应。同时,适宜的铁钴比有助于改善金属间亲密度,从而通过合理串联活性位以获取最佳的低碳烯烃选择性和尽可能低的甲烷选择性,铁钴比为6时CO2转化率为32.72%,低碳烯烃选择性最高达到37.14%。
中图分类号:
董子超, 吴玉, 张博风, 刘斯宝, 刘国柱, 赵杰. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656.
DONG Zichao, WU Yu, ZHANG Bofeng, LIU Sibao, LIU Guozhu, ZHAO Jie. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656.
X | Co①/%(mass) | Fe①/%(mass) | Fe/Co② | SBET/ (m2·g-1) | Smicro/ (m2·g-1) | Smeso/ (m2·g-1) | Vmicro/ (cm3·g-1) | Vmeso/ (cm3·g-1) |
---|---|---|---|---|---|---|---|---|
3 | 9.1 | 26.5 | 3.1 | 152.9 | 43.5 | 109.4 | 0.02 | 0.31 |
4 | 6.6 | 26.0 | 4.1 | 133.3 | 14.6 | 118.7 | 0 | 0.32 |
6 | 4.6 | 25.5 | 5.8 | 118.2 | 6.6 | 111.6 | 0 | 0.27 |
9 | 3.9 | 34.0 | 9.1 | 171.1 | 54.9 | 116.2 | 0.02 | 0.42 |
表1 FeCo(X∶1)/MC催化剂物理性质
Table 1 Specific surface area properties of FeCo(X∶1)/MC catalysts
X | Co①/%(mass) | Fe①/%(mass) | Fe/Co② | SBET/ (m2·g-1) | Smicro/ (m2·g-1) | Smeso/ (m2·g-1) | Vmicro/ (cm3·g-1) | Vmeso/ (cm3·g-1) |
---|---|---|---|---|---|---|---|---|
3 | 9.1 | 26.5 | 3.1 | 152.9 | 43.5 | 109.4 | 0.02 | 0.31 |
4 | 6.6 | 26.0 | 4.1 | 133.3 | 14.6 | 118.7 | 0 | 0.32 |
6 | 4.6 | 25.5 | 5.8 | 118.2 | 6.6 | 111.6 | 0 | 0.27 |
9 | 3.9 | 34.0 | 9.1 | 171.1 | 54.9 | 116.2 | 0.02 | 0.42 |
催化剂 | CO2 吸附量①/(mmol·g-1) | CO2 转化率/% | 产物选择性/% | O/P② | |||||
---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C4 | C2=~C4= | C5+ | alcohol | ||||
FeCo(3∶1)/MC | 0.036 | 36.37 | 10.90 | 37.10 | 14.58 | 28.31 | 3.97 | 5.14 | 1.94 |
FeCo(4∶1)/MC | 0.031 | 34.63 | 11.93 | 31.69 | 12.57 | 34.40 | 3.96 | 5.45 | 2.74 |
FeCo(6:∶1)/MC | 0.026 | 32.72 | 13.48 | 27.30 | 10.59 | 37.14 | 5.49 | 6.00 | 3.51 |
FeCo(9∶1)/MC | 0.022 | 29.17 | 16.19 | 26.33 | 10.70 | 35.60 | 5.03 | 6.15 | 3.32 |
Fe/MC | 0.003 | 14.79 | 37.57 | 21.04 | 25.46 | 8.14 | 7.79 | 0 | 0.32 |
表2 FeCo/MC催化剂的CO2加氢性能
Table 2 CO2 hydrogenation performance of FeCo/MC catalysts
催化剂 | CO2 吸附量①/(mmol·g-1) | CO2 转化率/% | 产物选择性/% | O/P② | |||||
---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C4 | C2=~C4= | C5+ | alcohol | ||||
FeCo(3∶1)/MC | 0.036 | 36.37 | 10.90 | 37.10 | 14.58 | 28.31 | 3.97 | 5.14 | 1.94 |
FeCo(4∶1)/MC | 0.031 | 34.63 | 11.93 | 31.69 | 12.57 | 34.40 | 3.96 | 5.45 | 2.74 |
FeCo(6:∶1)/MC | 0.026 | 32.72 | 13.48 | 27.30 | 10.59 | 37.14 | 5.49 | 6.00 | 3.51 |
FeCo(9∶1)/MC | 0.022 | 29.17 | 16.19 | 26.33 | 10.70 | 35.60 | 5.03 | 6.15 | 3.32 |
Fe/MC | 0.003 | 14.79 | 37.57 | 21.04 | 25.46 | 8.14 | 7.79 | 0 | 0.32 |
1 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
2 | Liu X, Wang M, Zhou C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem. Commun. (Camb.), 2018, 54(2): 140-143. |
3 | Zhou W, Cheng K, Kang J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
4 | Saeidi S, Najari S, Fazlollahi F, et al. Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1292-1311. |
5 | Muleja A A, Gorimbo J, Masuku C M. Effect of co-feeding inorganic and organic molecules in the Fe and Co catalyzed Fischer–Tropsch synthesis: a review[J]. Catalysts, 2019, 9(9): 746. |
6 | Yang X Z, Zhang H, Liu Y X, et al. Preparation of iron carbides formed by iron oxalate carburization for Fischer–Tropsch synthesis[J]. Catalysts, 2019, 9(4): 347. |
7 | Puga A V. On the nature of active phases and sites in CO and CO2 hydrogenation catalysts[J]. Catalysis Science & Technology, 2018, 8(22): 5681-5707. |
8 | Liu M, Yi Y H, Wang L, et al. Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis[J]. Catalysts, 2019, 9(3): 275. |
9 | 张玉龙, 邵光印, 张征湃, 等. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698. |
Zhang Y L, Shao G Y, Zhang Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698. | |
10 | Liang B L, Duan H M, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932. |
11 | Yang H Y, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
12 | Dorner R W, Hardy D R, Williams F W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A: General, 2010, 373(1/2): 112-121. |
13 | Ando H. Selective alkene production by the hydrogenation of carbon dioxide over Fe-Cu catalyst[J]. Energy Procedia, 2016, 89: 421-427. |
14 | Wang X, Zhang J L, Chen J Y, et al. Effect of preparation methods on the structure and catalytic performance of Fe-Zn/K catalysts for CO2 hydrogenation to light olefins[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 761-767. |
15 | Satthawong R, Koizumi N, Song C S, et al. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. Journal of CO2 Utilization, 2013, 3/4: 102-106. |
16 | Li S W, Xu Y, Chen Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction[J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765. |
17 | Yoon S, Oh K, Liu F D, et al. Specific metal–support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity[J]. ACS Catalysis, 2018, 8(6): 5391-5398. |
18 | 刘洋洋, 孙超, Malhi Haripal Singh, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662. |
Liu Y Y, Sun C, Singh M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662. | |
19 | Wan H J, Wu B S, Xiang H W, et al. Fischer–Tropsch synthesis: influence of support incorporation manner on metal dispersion, metal–support interaction, and activities of iron catalysts[J]. ACS Catalysis, 2012, 2(9): 1877-1883. |
20 | Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
21 | Dokania A, Ramirez A, Bavykina A, et al. Heterogeneous catalysis for the valorization of CO2: role of bifunctional processes in the production of chemicals[J]. ACS Energy Letters, 2019, 4(1): 167-176. |
22 | Cheng Y, Lin J, Wu T J, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B: Environmental, 2017, 204: 475-485. |
23 | Chew L M, Kangvansura P, Ruland H, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation[J]. Applied Catalysis A: General, 2014, 482: 163-170. |
24 | Williamson D L, Herdes C, Torrente-Murciano L, et al. N-Doped Fe@CNT for combined RWGS/FT CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7395-7402. |
25 | Li Y H, Cai X H, Chen S J, et al. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem, 2018, 11(6): 1040-1047. |
26 | Zheng Y L, Cheng P, Xu J S, et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism[J]. Nanoscale, 2019, 11(11): 4911-4917. |
27 | Hu S, Liu M, Ding F S, et al. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95. |
28 | Ramirez A, Gevers L, Bavykina A, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
29 | Dong Z C, Zhao J, Tian Y J, et al. Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO2 hydrogenation to light olefins[J]. Catalysts, 2020, 10(4): 455. |
30 | Visconti C G, Martinelli M, Falbo L, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 530-542. |
31 | de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C)[J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
32 | Ding M Y, Yang Y, Wu B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Applied Energy, 2015, 160: 982-989. |
33 | Ishida T, Yanagihara T, Liu X H, et al. Synthesis of higher alcohols by Fischer-Tropsch synthesis over alkali metal-modified cobalt catalysts[J]. Applied Catalysis A: General, 2013, 458: 145-154. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[3] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[10] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 835
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 890
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||