1 |
巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.
|
|
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285.
|
2 |
Liu X, Wang M, Zhou C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem. Commun. (Camb.), 2018, 54(2): 140-143.
|
3 |
Zhou W, Cheng K, Kang J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
|
4 |
Saeidi S, Najari S, Fazlollahi F, et al. Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1292-1311.
|
5 |
Muleja A A, Gorimbo J, Masuku C M. Effect of co-feeding inorganic and organic molecules in the Fe and Co catalyzed Fischer–Tropsch synthesis: a review[J]. Catalysts, 2019, 9(9): 746.
|
6 |
Yang X Z, Zhang H, Liu Y X, et al. Preparation of iron carbides formed by iron oxalate carburization for Fischer–Tropsch synthesis[J]. Catalysts, 2019, 9(4): 347.
|
7 |
Puga A V. On the nature of active phases and sites in CO and CO2 hydrogenation catalysts[J]. Catalysis Science & Technology, 2018, 8(22): 5681-5707.
|
8 |
Liu M, Yi Y H, Wang L, et al. Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis[J]. Catalysts, 2019, 9(3): 275.
|
9 |
张玉龙, 邵光印, 张征湃, 等. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698.
|
|
Zhang Y L, Shao G Y, Zhang Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698.
|
10 |
Liang B L, Duan H M, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932.
|
11 |
Yang H Y, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598.
|
12 |
Dorner R W, Hardy D R, Williams F W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A: General, 2010, 373(1/2): 112-121.
|
13 |
Ando H. Selective alkene production by the hydrogenation of carbon dioxide over Fe-Cu catalyst[J]. Energy Procedia, 2016, 89: 421-427.
|
14 |
Wang X, Zhang J L, Chen J Y, et al. Effect of preparation methods on the structure and catalytic performance of Fe-Zn/K catalysts for CO2 hydrogenation to light olefins[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 761-767.
|
15 |
Satthawong R, Koizumi N, Song C S, et al. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. Journal of CO2 Utilization, 2013, 3/4: 102-106.
|
16 |
Li S W, Xu Y, Chen Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction[J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765.
|
17 |
Yoon S, Oh K, Liu F D, et al. Specific metal–support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity[J]. ACS Catalysis, 2018, 8(6): 5391-5398.
|
18 |
刘洋洋, 孙超, Malhi Haripal Singh, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662.
|
|
Liu Y Y, Sun C, Singh M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662.
|
19 |
Wan H J, Wu B S, Xiang H W, et al. Fischer–Tropsch synthesis: influence of support incorporation manner on metal dispersion, metal–support interaction, and activities of iron catalysts[J]. ACS Catalysis, 2012, 2(9): 1877-1883.
|
20 |
Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174.
|
21 |
Dokania A, Ramirez A, Bavykina A, et al. Heterogeneous catalysis for the valorization of CO2: role of bifunctional processes in the production of chemicals[J]. ACS Energy Letters, 2019, 4(1): 167-176.
|
22 |
Cheng Y, Lin J, Wu T J, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B: Environmental, 2017, 204: 475-485.
|
23 |
Chew L M, Kangvansura P, Ruland H, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation[J]. Applied Catalysis A: General, 2014, 482: 163-170.
|
24 |
Williamson D L, Herdes C, Torrente-Murciano L, et al. N-Doped Fe@CNT for combined RWGS/FT CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7395-7402.
|
25 |
Li Y H, Cai X H, Chen S J, et al. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem, 2018, 11(6): 1040-1047.
|
26 |
Zheng Y L, Cheng P, Xu J S, et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism[J]. Nanoscale, 2019, 11(11): 4911-4917.
|
27 |
Hu S, Liu M, Ding F S, et al. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95.
|
28 |
Ramirez A, Gevers L, Bavykina A, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182.
|
29 |
Dong Z C, Zhao J, Tian Y J, et al. Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO2 hydrogenation to light olefins[J]. Catalysts, 2020, 10(4): 455.
|
30 |
Visconti C G, Martinelli M, Falbo L, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 530-542.
|
31 |
de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C)[J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941.
|
32 |
Ding M Y, Yang Y, Wu B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Applied Energy, 2015, 160: 982-989.
|
33 |
Ishida T, Yanagihara T, Liu X H, et al. Synthesis of higher alcohols by Fischer-Tropsch synthesis over alkali metal-modified cobalt catalysts[J]. Applied Catalysis A: General, 2013, 458: 145-154.
|