化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3658-3667.doi: 10.11949/0438-1157.20210050

• 催化、动力学与反应器 • 上一篇    下一篇

乙烷与苯经接力催化路线制备乙苯

程挥戈(),牛韦,汤兴蕾,岳亮旭,康金灿(),张庆红,王野   

  1. 厦门大学化学化工学院,醇醚酯化工清洁生产国家工程实验室,福建 厦门 361005
  • 收稿日期:2021-01-09 修回日期:2021-04-12 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 康金灿 E-mail:hgcheng@stu.xmu.edu.cn;kangjc@xmu.edu.cn
  • 作者简介:程挥戈(1996—),男,硕士研究生,hgcheng@stu.xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21872112)

Synthesis of ethylbenzene from ethane and benzene by tandem catalysis

CHENG Huige(),NIU Wei,TANG Xinglei,YUE Liangxu,KANG Jincan(),ZHANG Qinghong,WANG Ye   

  1. National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2021-01-09 Revised:2021-04-12 Published:2021-07-05 Online:2021-07-05
  • Contact: KANG Jincan E-mail:hgcheng@stu.xmu.edu.cn;kangjc@xmu.edu.cn

摘要:

设计乙烷经氯氧化制备乙烯再与苯烷基化一步法制备乙苯的接力催化路线。研制铈基氧化物作为活化乙烷生成中间产物乙烯的催化剂,并耦合H-ZSM-5沸石分子筛与苯进一步烷基化生成乙苯。在Mn/CeO2氧化物与H-ZSM-5沸石分子筛以研磨混合形成的双功能催化剂上,实现了乙烷与苯催化制备乙苯的可控接力催化。考察了氧化物的组成、氧化物与沸石分子筛的耦合方式与最适质量配比、沸石分子筛的硅铝比对接力催化反应的影响,并进行了催化剂稳定性研究。结合X射线衍射(XRD)、NH3程序升温脱附(NH3-TPD)、透射电子显微镜(TEM)、X射线荧光光谱分析(XRF)等表征手段分析了催化剂结构及其与催化性能的构效关系。提出后续催化剂研究的关键在于分子筛烷基化能力以及抗流失能力的提高。

关键词: 乙苯, 乙烷, 苯, 接力催化, 分子筛, 氧化铈

Abstract:

This work designs a tandem route for the production of ethylbenzene (EB) directly from ethane and benzene via the ethylene intermediate. The tandem reaction consists of chlorine oxidation of ethane to form ethylene and the alkylation reaction between ethylene and benzene. In this paper, cerium-based oxide was selected as the catalyst for activating ethane to produce ethylene, and the H-ZSM-5 zeolite was used to be further alkylated with benzene to produce ethylbenzene. We investigate the optimization of the selected oxides, and the effects of the ratio of oxides and zeolites, acidity of zeolite on catalytic performances of tandem reaction over Mn/CeO2-H-ZSM-5 bifunctional catalyst. The stability of catalyst is also investigated. Combining X-ray diffraction (XRD), NH3 temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM), and X-ray fluorescence spectroscopy (XRF) techniques, the structure of catalyst and the relationship of structure and performances are further studied. The research suggests that the key to subsequent catalyst research lies in the improvement of zeolite alkylation ability and anti-loss ability.

Key words: ethylbenzene, ethane, benzene, tandem catalysis, zeolite, cerium oxide

中图分类号: 

  • TQ 028.8

图1

乙烷氯氧化、乙烯与苯烷基化的催化反应性能"

图2

Mn/CeO2氧化物与H-ZSM-5(25)分子筛的耦合方式对反应性能的影响(反应条件:W(Mn/CeO2) = 0.5 g, T = 450℃, P = 0.1 MPa, F(total) = 40 ml/min, time on stream 2.5 h, C2H6/benzene/HCl/O2/N2/He = 1/3.2/3/1/1.5/3.5, Mn/CeO2∶H-ZSM-5= 1∶2)"

图3

Mn/CeO2氧化物与H-ZSM-5分子筛的质量比对催化性能的影响(反应条件:W = 1.5 g, T = 450℃, P = 0.1 MPa, F(total) = 40 ml/min, time on stream 2.5 h, C2H6/benzene/HCl/O2/N2/He = 1/3.2/3/1/1.5/3.5)"

图4

H-ZSM-5分子筛硅铝比对双功能催化剂反应性能的影响(反应条件:W = 1.5 g, T = 450℃, P = 0.1 MPa, F(total) = 40 ml/min, Mn/CeO2∶H-ZSM-5 = 1∶2, time on stream 2.5 h, C2H6/benzene/HCl/O2/N2/He = 1/3.2/3/1/1.5/3.5)"

图5

Mn/CeO2-H-ZSM-5(38)- grind催化剂上反应性能随时间变化(反应条件:W = 1.5 g, T = 450℃, P = 0.1 MPa, F(total) = 40 ml/min, C2H6/benzene/HCl/O2/N2/He = 1/3.2/3/1/1.5/3.5)"

图6

Mn负载前后CeO2的XRD谱图"

图7

Mn/CeO2、H-ZSM-5及其复合物的XRD谱图"

图8

Mn/CeO2纳米棒的TEM图"

图9

Mn/CeO2与H-ZSM-5分子筛研磨复合后的TEM图"

表1

催化剂反应前后的XRF分析结果"

Reaction time/hElement content/% (mass)
CeMnAlSi
015.862.160.8434.3
2.515.912.070.8134.0
3516.431.620.7539.7

图10

不同硅铝比的H-ZSM-5分子筛的NH3-TPD图"

图11

Mn/CeO2-H-ZSM-5-grind催化剂反应前后NH3-TPD图"

1 Cavani F, Trifirò F. Alternative processes for the production of styrene[J]. Applied Catalysis A: General, 1995, 133(2): 219-239.
2 Vrieland G E, Menon P G. Nature of the catalytically active carbonaceous sites for the oxydehydrogenation of ethylbenzene to styrene: a brief review[J]. Applied Catalysis, 1991, 77(1): 1-8.
3 Kainthla I, Bhanushali J T, Keri R S, et al. Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review[J]. Catalysis Science & Technology, 2015, 5(12): 5062-5076.
4 Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: a novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285(1/2): 155-161.
5 Yang W M, Wang Z D, Sun H M, et al. Advances in development and industrial applications of ethylbenzene processes[J]. Chinese Journal of Catalysis, 2016, 37(1): 16-26.
6 Liu S L, Chen F C, Xie S J, et al. Highly selective ethylbenzene production through alkylation of dilute ethylene with gas phase-liquid phase benzene and transalkylation feed[J]. Journal of Natural Gas Chemistry, 2009, 18(1): 21-24.
7 Zhong L, Yu F, An Y, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87.
8 Li Y J, Zhang T T. Integration and optimized utilization of naphtha resources[J]. China Petroleum Processing and Petrochemical Technology, 2010, 12(2): 51-56.
9 Haribal V P, Chen Y, Neal L, et al. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: process simulations and analysis[J]. Engineering, 2018, 4(5): 714-721.
10 曹杰, 迟东训. 中国乙烯工业发展现状与趋势[J]. 国际石油经济, 2019, 27(12): 53-59.
Cao J, Chi D X. Development status and trend of ethylene industry in China[J]. International Petroleum Economics, 2019, 27(12): 53-59.
11 Zhao Z T, Chong K T, Jiang J Y, et al. Low-carbon roadmap of chemical production: a case study of ethylene in China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 580-591.
12 黄格省, 师晓玉, 张彦, 等. 国内外乙烷裂解制乙烯发展现状及思考[J]. 现代化工, 2018, 38(10): 1-5.
Huang G S, Shi X Y, Zhang Y, et al. Situation of ethylene production via ethane cracking and considerations[J]. Modern Chemical Industry, 2018, 38(10): 1-5.
13 徐海丰. 2018年世界乙烯行业发展状况与趋势[J]. 国际石油经济, 2019, 27(1): 82-88.
Xu H F. Global ethylene industry in 2018 and its development trend[J]. International Petroleum Economics, 2019, 27(1): 82-88.
14 Dasani D, Wang Y, Tsotsis T T, et al. Laboratory-scale investigation of sorption kinetics of methane/ethane mixtures in shale[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 9953-9963.
15 Scott A R. Composition of coalbed gases [J]. In Situ, 1994, 18(2): 185-208.
16 Nakano S, Yamamoto K, Ohgaki K. Natural gas exploitation by carbon dioxide from gas hydrate fields—high-pressure phase equilibrium for an ethane hydrate system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1998, 212(3): 159-163.
17 Choudhary V R, Uphade B S, Mulla S A R. Coupling of endothermic thermal cracking with exothermic oxidative dehydrogenation of ethane to ethylene using a diluted SrO/La2O3 catalyst[J]. Angewandte Chemie International Edition in English, 1995, 34(6): 665-666.
18 Yang J I, Kim J N, Cho S H, et al. Catalytic composites based on yttria stabilized zirconia for oxidative dehydrogenation of ethane[J]. Korean Journal of Chemical Engineering, 2004, 21(2): 381-384.
19 温翯, 郭晓莉, 苟尕莲, 等. 乙烷裂解制乙烯的工艺研究进展[J]. 现代化工, 2020, 40(5): 47-51.
Wen H, Guo X L, Gou G L, et al. Process research advances in ethane cracking to ethylene[J]. Modern Chemical Industry, 2020, 40(5): 47-51.
20 Olah G A, Schilling P, Staral J S, et al. Electrophilic reactions at single bonds(ⅪⅤ): Anhydrous fluoroantimonic acid catalyzed alkylation of benzene with alkanes and alkane-alkene and alkane-alkylbenzene mixtures[J]. Journal of the American Chemical Society, 1975, 97(23): 6807-6810.
21 Isaev S A, Vasina T V, Bragin O V. Alkylation of benzene by propane over zeolite-containing pentasil-alumina compositions and dealuminated pentasils[J]. Bulletin of the Russian Academy of Sciences, Division of Chemical Science, 1992, 41(12): 2143-2146.
22 Kato S, Nakagawa K, Ikenaga N O, et al. Alkylation of benzene with ethane over platinum-loaded zeolite catalyst[J]. Catalysis Letters, 2001, 73(2/3/4): 175-180.
23 Lukyanov D, Vazhnova T. A kinetic study of benzene alkylation with ethane into ethylbenzene over bifunctional PtH-MFI catalyst[J]. Journal of Catalysis, 2008, 257(2): 382-389.
24 Zhou W, Kang J, Cheng K, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew. Chem. Int. Ed., 2018, 57(37): 12012-12016.
25 Zhou W, Cheng K, Kang J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
26 Kang J, He S, Zhou W, et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nature Communications, 2020, 11(1): 827.
27 Yu F C, Wu X J, Zhang Q H, et al. Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts[J]. Chinese Journal of Catalysis, 2014, 35(8): 1260-1266.
28 Shavaleev D A, Pavlov M L, Basimova R A, et al. Synthesis of a zeolite-containing catalyst for gas-phase alkylation of benzene with ethylene[J]. Petroleum Chemistry, 2020, 60(10): 1164-1169.
29 Zhang Z Q, Ding J, Chai R J, et al. Oxidative dehydrogenation of ethane to ethylene: a promising CeO2-ZrO2-modified NiO-Al2O3/Ni-foam catalyst[J]. Applied Catalysis A: General, 2018, 550: 151-159.
30 Cheng K, Zhou W, Kang J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347.
31 Cuo Z X, Wang D D, Gong Y, et al. A novel porous ceramic membrane supported monolithic Cu-doped Mn–Ce catalysts for benzene combustion[J]. Catalysts, 2019, 9(8): 652.
32 Gärtner C A, Van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217.
33 Li C W, Sun Y, Hess F, et al. Catalytic HCl oxidation reaction: stabilizing effect of Zr-doping on CeO2 nano-rods[J]. Applied Catalysis B: Environmental, 2018, 239: 628-635.
34 Katada N, Igi H, Kim J H. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. The Journal of Physical Chemistry B, 1997, 101(31): 5969-5977.
35 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2015.
Xu R R, Pang W Q, Huo Q S. Molecular Sieves and Porous Materials Chemistry [M]. 2nd ed. Beijing: Science Press, 2015.
36 Shirazi L, Jamshidi E, Ghasemi M R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size[J]. Crystal Research and Technology, 2008, 43(12): 1300-1306.
37 Zhu H B, Liu Z C, Kong D J, et al. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent[J]. The Journal of Physical Chemistry C, 2008, 112(44): 17257-17264.
38 Janssens T V W. A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts[J]. Journal of Catalysis, 2009, 264(2): 130-137.
39 刘巧玲. 含氯化氢废气的处理与回收利用[J]. 化工管理, 2017,(23): 226-228.
Liu Q L. Treatment and recovery of waste gas containing hydrogen chloride [J]. Chemical Enterprise Management, 2017,(23): 226-228.
40 黄冬兰. 膜法分离丙烯和氯化氢混合气[D]. 大连: 大连理工大学, 2004.
Huang D L. Study on separation of propylene/hydrogen chloride mixture gas by membrane technology[D]. Dalian: Dalian University of Technology, 2004.
[1] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[2] 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
[3] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[4] 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
[5] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[6] 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510.
[7] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
[8] 冯晓博, 刘天龙, 赵小燕, 曹景沛. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967.
[9] 李燕, 蹇亮, 茅沁怡, 潘成思, 蒋平平, 朱永法, 董玉明. 构建Bi2O2CO3/g-C3N4异质结光催化完全氧化苯甲醇至苯甲醛[J]. 化工学报, 2021, 72(8): 4166-4176.
[10] 韩维辰, 王佳铭, 贺曼罗, 贺高红, 焉晓明, 阮雪华. 潜伏型环氧固化剂甲基异丁基酮二亚胺的合成及工艺优化[J]. 化工学报, 2021, 72(7): 3832-3838.
[11] 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715.
[12] 方丽君, 王景梅, 林巧靖, 陈建华, 杨谦. 二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究[J]. 化工学报, 2021, 72(7): 3716-3727.
[13] 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855.
[14] 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315.
[15] 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王志, 赵媛媛, 叶楠, 王纪孝, 赵之平, 王世昌. 微滤和超滤膜流动电位的四种测量操作方式[J]. CIESC Journal, 2006, 14(4): 456 -463 .
[2] 钟理, 罗京莉, K.Chuang. 中温H2S-空气燃料电池阴极催化剂的研究[J]. CIESC Journal, 2007, 15(3): 305 -308 .
[3] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(I)非传质操作[J]. CIESC Journal, 2007, 15(3): 361 -368 .
[4] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[5] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[6] 曹维良, 徐金龙, 张敬畅. 超(亚)临界CO2中涂料基体的相行为研究[J]. CIESC Journal, 2003, 11(2): 181 -184 .
[7] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[8] 杨长生, 马沛生, 唐多强, 靳凤民. 1,2-丙二醇水溶液在不同温度下的超额摩尔体积黏度和热容[J]. CIESC Journal, 2003, 11(2): 175 -180 .
[9] 谢方友, 朱明乔, 刘建青, 何潮洪. 在脉冲填料柱中萃取硫酸铵溶液中的己内酰胺[J]. CIESC Journal, 2002, 10(6): 677 -680 .
[10] 周理, 王怡琳, 陈海华, 周亚平. 天然气管网吸附调峰可行性的模拟研究[J]. CIESC Journal, 2002, 10(6): 653 -656 .