化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1607-1618.DOI: 10.11949/0438-1157.20221564
李木金1(), 胡松1, 施德磐1, 赵鹏1, 高瑞1, 李进龙2
收稿日期:
2022-12-05
修回日期:
2023-03-14
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
李木金
作者简介:
李木金(1980—),女,硕士,高级工程师,limj.sshy@sinopec.com
基金资助:
Mujin LI1(), Song HU1, Depan SHI1, Peng ZHAO1, Rui GAO1, Jinlong LI2
Received:
2022-12-05
Revised:
2023-03-14
Online:
2023-04-05
Published:
2023-06-02
Contact:
Mujin LI
摘要:
针对以过氧化氢乙苯法生产1,2-环氧丁烷(简称环氧丁烷)工艺中环氧丁烷尾气难回收问题,提出了以环氧丁烷精制单元萃取剂正辛烷为吸收剂和利用精制单元萃取精馏塔同时作为解吸塔的环氧丁烷回收新工艺。该工艺同时考虑无催化环氧丁烷水解生成1,2-丁二醇,利用1,2-丁二醇与正辛烷可形成最低温度非均相共沸物特性,侧线采出共沸物脱除1,2-丁二醇达到纯化循环萃取剂提高萃取效率的分离目标。选用NRTL热力学方法,对上述流程进行了全流程模拟和优化设计,分析了溶剂比、理论塔板数、吸收剂进料温度等主要工艺参数对分离的影响规律。结果表明:新工艺对环氧丁烷回收率达到99.99%(质量),对环氧丁烷工业装置产能提升、节能降耗和挥发性有机物(VOCs)治理具有实际应用价值。
中图分类号:
李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618.
Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide[J]. CIESC Journal, 2023, 74(4): 1607-1618.
Solvent | Henry coefficient/mmHg① | |||
---|---|---|---|---|
BO | Acetone | Water | N2 | |
n-octane (nC8) | 126.30 | 312.83 | 882006.0 | 50533.4 |
iso-octane (isoC8) | 129.43 | 303.59 | 795399.4 | 56078.6 |
2-methyl heptane (methylC7) | 125.76 | 307.30 | 851851.3 | 51586.9 |
cumene | 76.18 | 123.74 | 151607.6 | 60638.9 |
ethyle benzene (ethylB) | 76.96 | 123.94 | 148667.1 | 65146.4 |
表1 不同组分在各溶剂中的亨利系数
Table 1 Henry coefficients of different solutes in various solutions
Solvent | Henry coefficient/mmHg① | |||
---|---|---|---|---|
BO | Acetone | Water | N2 | |
n-octane (nC8) | 126.30 | 312.83 | 882006.0 | 50533.4 |
iso-octane (isoC8) | 129.43 | 303.59 | 795399.4 | 56078.6 |
2-methyl heptane (methylC7) | 125.76 | 307.30 | 851851.3 | 51586.9 |
cumene | 76.18 | 123.74 | 151607.6 | 60638.9 |
ethyle benzene (ethylB) | 76.96 | 123.94 | 148667.1 | 65146.4 |
Item | 12BDO/%(mass) | nC8/%(mass) | Azeotropic temperature/℃ |
---|---|---|---|
UNIQUAC-UNIFAC | 5.08 | 94.92 | 123.51 |
NRTL-UNIFAC | 4.94 | 95.06 | 123.6 |
COSMO-SAC | 2.91 | 97.09 | 124.5 |
表2 12BDO与nC8二元共沸体系组成及共沸温度
Table 2 Azeotropic temperature and mass composition for 12BDO-nC8
Item | 12BDO/%(mass) | nC8/%(mass) | Azeotropic temperature/℃ |
---|---|---|---|
UNIQUAC-UNIFAC | 5.08 | 94.92 | 123.51 |
NRTL-UNIFAC | 4.94 | 95.06 | 123.6 |
COSMO-SAC | 2.91 | 97.09 | 124.5 |
图14 SRC理论级数、进料位置、塔顶馏出率以及回流比对分离过程的影响
Fig.14 Effect of the number of theoretical stage, feed stage, distillation rate and refiux ratio for SRC on the separation process
Unit Block | Parameter | Value |
---|---|---|
offgas absorption column (OAC) | operating pressure/kPa | 400 |
operating temperature/℃ | 20.0 | |
theoretical stage | 9 | |
feed stage of BO offgas | 9 | |
temperature of solvent/℃ | 20 | |
solvent ratio | 1.5 | |
extractive distillation column (EDC) | operating pressure/kPa | 141 |
theoretical stage | 50 | |
feed stage of solvent | 1 | |
feed stage of crude BO | 7 | |
mass solvent ratio | 2.3 | |
distillation rate/(kg/h) | 3000 | |
solvent recovery column (SRC) | operating pressure/kPa | 121 |
theoretical stage | 31 | |
feed stage of feeding | 9 | |
mass reflux ratio | 2.7 | |
distillation rate/(kg/h) | 12490 | |
stage of side line production | 28 | |
mass flow of side line production/(kg/h) | 550 | |
stage of side reflux | 30 |
表3 流程模拟优化工艺条件
Table 3 Optimization parameters for flowsheet simulation
Unit Block | Parameter | Value |
---|---|---|
offgas absorption column (OAC) | operating pressure/kPa | 400 |
operating temperature/℃ | 20.0 | |
theoretical stage | 9 | |
feed stage of BO offgas | 9 | |
temperature of solvent/℃ | 20 | |
solvent ratio | 1.5 | |
extractive distillation column (EDC) | operating pressure/kPa | 141 |
theoretical stage | 50 | |
feed stage of solvent | 1 | |
feed stage of crude BO | 7 | |
mass solvent ratio | 2.3 | |
distillation rate/(kg/h) | 3000 | |
solvent recovery column (SRC) | operating pressure/kPa | 121 |
theoretical stage | 31 | |
feed stage of feeding | 9 | |
mass reflux ratio | 2.7 | |
distillation rate/(kg/h) | 12490 | |
stage of side line production | 28 | |
mass flow of side line production/(kg/h) | 550 | |
stage of side reflux | 30 |
1 | 刘艳飞, 黄可龙, 彭东明, 等. 二氧化碳/1, 2-环氧丁烷/ε-己内酯的三元共聚合和表征[J]. 高分子学报, 2007(9): 816-821. |
Liu Y F, Huang K L, Peng D M, et al. Characterization and terpolymerization of carbon dioxide/1, 2-butylene oxide/ε-caprolactone[J]. Acta Polymerica Sinica, 2007(9): 816-821. | |
2 | Beshah K, Campbell R, Dan F, et al. Insights into the behavior of ethylene oxide-1, 2-epoxybutane diblock copolymers in water as a function of temperature and the presence of colloidal silica[J]. Journal of Colloid and Interface Science, 2021, 581: 102-111. |
3 | 刘呈立, 刘跃进, 易娇, 等. 1,2-环氧丁烷选择性加氢制正丁醇[J]. 工业催化, 2009, 17(11): 31-33. |
Liu C L, Liu Y J, Yi J, et al. Selective hydrogenation of 1,2-epoxybutane to n-butanol[J]. Industrial Catalysis, 2009, 17(11): 31-33. | |
4 | 金国杰, 高焕新, 康陈军, 等. 环氧丁烷的生产方法: 104230856A[P]. 2014-12-24. |
Jin G J, Gao H X, Kang C J, et al. Production method of epoxybutane: 104230856A[P]. 2014-12-24. | |
5 | 周灵杰, 吴美玲, 陈玮娜, 等. 丁烯环氧化制备环氧丁烷的方法: 104098532A[P]. 2014-10-15. |
Zhou L J, Wu M L, Chen W N, et al. Method for preparing epoxybutane through butene epoxidation: 104098532A[P]. 2014-10-15. | |
6 | 吴美玲, 周灵杰, 陈玮娜, 等. 一种制备环氧丁烷的方法: 104177314A[P]. 2014-12-03. |
Wu M L, Zhou L J, Chen W N, et al. Method for preparing epoxy butane: 104177314A[P]. 2014-12-03. | |
7 | 金国杰, 康陈军, 高焕新, 等.生产环氧丁烷的方法: 105218485B[P]. 2019-01-01. |
Jin G J, Kang C J, Gao H X, et al. Method for producing epoxybutane: 105218485B[P]. 2019-01-01. | |
8 | 黄东平, 邢益辉. 过氧化氢乙苯氧化1-丁烯制备1, 2-环氧丁烷的研究[J]. 化学推进剂与高分子材料, 2020, 18(3): 49-52. |
Huang D P, Xing Y H. Study on preparation of 1, 2-butylene oxide by oxidation of 1-butylene with ethylbenzene hydroperoxide[J]. Chemical Propellants & Polymeric Materials, 2020, 18(3): 49-52. | |
9 | Yaws C L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients[M]. Cambridge: Gulf Professional Publishing, 2015. |
10 | Steele W V, Chirico R D, Knipmeyer S E, et al. Vapor pressure of acetophenone, (±)-1, 2-butanediol, (±)-1, 3-butanediol, diethylene glycol monopropyl ether, 1, 3-dimethyladamantane, 2-ethoxyethyl acetate, ethyl octyl sulfide, and pentyl acetate[J]. Journal of Chemical & Engineering Data, 1996, 41(6): 1255-1268. |
11 | 辜乌根, 胡松, 李木金, 等. 萃取精馏法精制1, 2-环氧丁烷的研究[J]. 石油化工, 2016, 45(7): 834-840. |
Gu W G, Hu S, Li M J, et al. Purification of 1, 2-butylene oxide by extractive distillation[J]. Petrochemical Technology, 2016, 45(7): 834-840. | |
12 | 徐寿海, 韩少川, 朱孟涛, 等. 一种环氧乙烷残气处理装置: 2640588[P]. 2004-09-15. |
Xu S H, Han S C, Zhu M T, et al. An ethylene oxide residual gas treatment device: 2640588[P]. 2004-09-15. | |
13 | 吕延利. 环氧乙烷废气处理机: 101224381A[P]. 2008-07-23. |
Lv Y L. A purification method for ethylene oxide waste gas: 101224381A[P]. 2008-07-23. | |
14 | 王新, 刘忠生, 戴文军, 等. 一种含环氧丙烷有机废气的净化方法: 102049182B[P]. 2015-07-22. |
Wang X, Liu Z S, Dai W J, et al. Method for purifying epoxypropane-containing organic waste gas: 102049182B[P]. 2015-07-22. | |
15 | 张宏科, 姚雨, 陈斌, 等. 一种含环氧丙烷或环氧乙烷有机废气的净化方法: 104014227B[P]. 2016-03-09. |
Zhang H K, Yao Y, Chen B, et al. Method for purifying organic waste gas containing epoxypropane or ethylene oxide: 104014227B[P]. 2016-03-09. | |
16 | 王新, 赵磊, 方向晨, 等. 一种有机废气的净化方法: 104566404B[P]. 2017-05-17. |
Wang X, Zhao L, Fang X C, et al. A purification method for organic waste gas: 104566404B[P]. 2017-05-17. | |
17 | Cochrane J E, Craft T R, Cariello N F, et al. Mutagenicity and toxicity of 1, 2-epoxybutane and diepoxybutene in human lymphoblasts[J]. Environ. Mol. Mutag., 1991, 17(19): 17. |
18 | Harder A, Escher B I, Landini P, et al. Evaluation of bioanalytical assays for toxicity assessment and mode of toxic action classification of reactive chemicals[J]. Environmental Science & Technology, 2003, 37(21): 4962-4970. |
19 | 胡松, 李进龙, 杨卫胜. 环氧丙烷尾气甲醇吸收及纯化工艺[J]. 化工学报, 2020, 71(4): 1657-1665. |
Hu S, Li J L, Yang W S. Propylene oxide offgas recovery and purification process with methanol solvent[J]. CIESC Journal, 2020, 71(4): 1657-1665. | |
20 | Hu S, Li J L, Wang Q H, et al. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product[J]. Chinese Journal of Chemical Engineering, 2022, 45: 111-120. |
21 | Lin S T, Sandler S I. A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 899-913. |
22 | Mullins E, Oldland R, Liu Y A, et al. Sigma-profile database for using COSMO-based thermodynamic methods[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4389-4415. |
23 | Hsieh C M, Sandler S I, Lin S T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1): 90-97. |
24 | 李明宴, 李进龙, 彭昌军, 等. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
Li M Y, Li J L, Peng C J, et al. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC[J]. CIESC Journal, 2022, 73(3): 1044-1053. | |
25 | Janakey Devi V K P, Sai P S T, Balakrishnan A R. Screening of ionic liquids as entrainers for the separation of 1-propanol + water and 2-propanol + water mixtures using COSMO-RS model[J]. Chemical Engineering Communications, 2018, 205(6): 772-788. |
26 | Lee B S, Lin S T. Prediction and screening of solubility of pharmaceuticals in single- and mixed-ionic liquids using COSMO-SAC model[J]. AIChE Journal, 2017, 63(7): 3096-3104. |
27 | Gmehling J, Li J D, Schiller M. A modified UNIFAC model (2): Present parameter matrix and results for different thermodynamic properties[J]. Industrial & Engineering Chemistry Research, 1993, 32(1): 178-193. |
28 | Larsen B L, Rasmussen P, Fredenslund A. A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J]. Industrial & Engineering Chemistry Research, 1987, 26(11): 2274-2286. |
29 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
30 | Hu S, Li J L, Li M J, et al. Design, simulation, and pilot verification of a coupled azeotropic and extractive distillation process for the production of propylene oxide with high purity[J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 7385-7396. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[8] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[9] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[10] | 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713. |
[11] | 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742. |
[12] | 霍猛, 彭晓婉, 赵金, 马秋伟, 邓春, 刘蓓, 陈光进. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313. |
[13] | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
[14] | 徐梦凯, 李舒宏, 金正浩. 氨-水-溴化锂三元工质氨吸收式制冷性能[J]. 化工学报, 2021, 72(S1): 127-133. |
[15] | 唐靖轩, 刘轶伦, 何巍, 沈旭柱, 王勤, 陈光明. 双进双出气泡泵输送性能[J]. 化工学报, 2021, 72(S1): 140-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||