CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2790-2796.doi: 10.11949/j.issn.0438-1157.20171501

Previous Articles     Next Articles

Study of urine-powered microbial fuel cell anode modified by graphene-type novel materials

ZHOU Yu, LIU Zhongliang, HOU Junxian, CHEN Wenwen, LOU Xiaoge, LI Yanxia   

  1. The Education Ministry Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2017-11-09 Revised:2017-12-09 Online:2018-06-05 Published:2018-06-05
  • Supported by:

    supported by the National Natural Science Foundation of China(516706004).

Abstract:

Urine-powered microbial fuel cells (UMFCs) are bioelectrochemical system that can recover energy from urine-a typical wastewater produced in urban and aerospace ships. The anode is the key unit determining the UMFC performance. To improve its performance, black phosphorus (BP), expanded graphite (EG) and carboxyl graphene (COOH-GN) which are three graphene-type novel materials were used to modify carbon cloth anode and three anodes (BP/CC, EG/CC and COOH-GN/CC) were thus fabricated. The surface of the carbon cloth becomes rougher after modification. The results of electrochemical impedance spectroscopy tests demonstrated that the modified anodes have low resistance and excellent electrochemical properties. Using BP/CC, EG/CC and COOH-GN/CC as the UMFC anodes respectively, the UMFCs yielded maximum voltage output of 587.71, 512.46 and 492.49 mV, respectively, power density of 5254.43, 3925.44 and 3252.05 mW/m3, respectively, which clearly shows that the BP modification is the best.

Key words: black phosphorus, expanded graphite, carboxyl graphene, fuel cell, anode

CLC Number: 

  • TK6
[1] MATTEO G, MILOMIR S, KAMRUL H, et al. Halotolerant extremophile bacteria from the great salt lake for recycling pollutants in microbial fuel cells[J]. Journal of Power Sources, 2017, 356:310-318.
[2] ZHOU Y, TANG L J, LIU Z L, et al. A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal, 2017, 124:36-43.
[3] HOU J X, LIU Z L, ZHANG P Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224:139-144.
[4] IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilisation by microbial fuel cells; energy fuel for the future[J]. Physical Chemistry Chemical Physics, 2012, 14:94-98.
[5] 周宇. 尿液微生物燃料电池阳极性能的研究[D]. 北京:北京工业大学, 2017. ZHOU Y. Research on anode performance of urine-powered microbial fuel cell[D]. Beijing:Beijing University of Technology, 2017.
[6] 常继勇. 微生物燃料电池处理生活污水特性研究[D]. 沈阳:沈阳建筑大学, 2013. CHANG J Y. The research of microbial fuel cell in treating wastewater characteristics[D]. Shenyang:Shenyang Jian Zhu University, 2013.
[7] 黄敏. 微生物燃料电池和废水厌氧生物处理结合的探讨[D]. 合肥:合肥工业大学, 2008. HUANG M. The integration of anaerobic microbial treatment and microbial fuel cell[D]. Hefei:Hefei University of Technology, 2008.
[8] IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy:the first MFC powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15:15312-15316.
[9] SANTORO C, IEROPOULOS I, GREENMAN J, et al. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine[J]. Journal of Power Sources, 2013, 238:190-196.
[10] KUNTKE P, ?MIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8):2627-2636.
[11] YOU J, GREENMAN J, MELHUISH C, et al. Electricity generation and struvite recovery from human urine using microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):647-654.
[12] YOU J, GREENMAN J, MELHUISH C, et al. Small-scale microbial fuel cells utilising uric salts[J]. Sustainable Energy Technologies and Assessments, 2014, 6:60-63.
[13] CHOULER J, PADGETT G A, CAMERON P J, et al. Towards effective small scale microbial fuel cells for energy generation from urine[J]. Electrochimica Acta, 2016, 192:89-98.
[14] PAPAHARALABOS G, GREENMAN J, MELHUISH C, et al. A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment[J]. International Journal of Hydrogen Energy, 2015, 40(11):4263-4268.
[15] WINFIELD J, CHAMBERS L D, STINCHCOMBE A, et al. The power of glove:soft microbial fuel cell for low-power electronics[J]. Journal of Power Sources, 2014, 249:327-332.
[16] TAGHAVI M, STINCHCOMBE A, GREENMAN J, et al. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC[J]. Bioinspiration & Biomimetics, 2015, 11(1):016001.
[17] 周宇, 刘中良, 侯俊先, 等. 化学氧化改性微生物燃料电池阳极[J]. 化工学报, 2015, 66(3):1171-1177. ZHOU Y, LIU Z L, HOU J X, et al. Microbial fuel cell anode modified by chemical oxidation[J]. CIESC Journal, 2015, 66(3):1171-1177.
[18] HOU J X, LIU Z L, YANG S Q, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015, 38(5):881-888.
[19] ZHANG C Y, LIANG P, YANG X F, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors and Bioelectronics, 2016, 81:32-38.
[20] ZHANG Y P, SUN J, HU Y Y, et al. Bio-cathode materials evaluation in microbial fuel cells:a comparison of graphite felt, carbon paper and stainless steel mesh materials[J]. International Journal of Hydrogen Energy, 2012, 37(22):16935-16942.
[21] ZHOU Y, HOU J X, CHEN W W, et al. Carbon nanotube sponge 3D anodes for urine-powered microbial fuel cell[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(14):1543-1547.
[22] YANG X S, MA X X, WANG K, et al. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode[J]. Electrochimica Acta, 2016, 210:846-853.
[23] HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258:204-209.
[24] HOU J X, LIU Z L, LI Y X. Polyaniline modified stainless steel fiber felt for high-performance microbial fuel cell anodes[J]. Journal of Clean Energy Technologies, 2015, 3(3):165-169.
[25] 刘中良, 周宇, 侯俊先, 等. 微生物燃料电池阳极的研究进展[J]. 化学与生物工程, 2013, 30(12):5-9. LIU Z L, ZHOU Y, HOU J X, et al. Research progress of anode of microbial fuel cell[J]. Chemistry & Bioengineering, 2013, 30(12):5-9.
[26] 莫光权. 功能化碳纳米管材料在微生物燃料电池中的应用研究[D]. 广州:华南理工大学, 2010. MO G Q. Application of functionalized carbon nanotube materials in microbial fuel cell[D]. Guangzhou:South China University of Technology, 2010.
[27] 侯俊先, 刘中良, 张培远. 石墨烯修饰微生物燃料电池阳极的研究[J]. 工程热物理学报, 2013, 34(7):1319-1322. HOU J X, LIU Z L, ZHANG P Y. The experimental study of graphene modified microbial fuel cell anode[J]. Journal of Engineering Thermophysics, 2013, 34(7):1319-1322.
[28] CI S Q, WEN Z H, CHEN J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications, 2012, 14(1):71-74.
[29] 涂丽杏. 微生物燃料电池纳米材料电极的制备与性能研究[D]. 广州:华南理工大学, 2013. TU L X. Preparation and performance research of nanomaterial electrodes of microbial fuel cells[D]. Guangzhou:South China University of Technology, 2013.
[30] 孙正博. 黑磷量子点的制备和生物应用[C]//2015中国(国际)功能材料科技与产业高层论坛摘要集. 中国仪表功能材料学会, 2015. SUN Z B. The preparation of black phosphorus quantum dot and its application on biology[C]//2015 China (International) Functional Materials Technology and Industry High-Level BBS Digest. Institute of Chinese Instrument Functional Materials, 2015.
[31] 侯俊先. 微生物燃料电池阳极性能的研究与优化[D]. 北京:北京工业大学, 2013. HOU J X. Study on anode performance of microbial fuel cell[D]. Beijing:Beijing University of Technology, 2013.
[32] 周俊. 单室微生物燃料电池阳极碳布的电化学修饰研究[D]. 广州:华南理工大学, 2014. ZHOU J. Electrochemical modification research of anode carbon cloth for single-chamber microbial fuel cells[D]. Guangzhou:South China University of Technology, 2014.
[33] 蔡慧. 双室微生物燃料电池碳基阳极材料的制备及其产电特性的研究[D]. 南京:南京理工大学, 2013. CAI H. Investigation about electrical properties of dual-chamber microbial fuel cell with different carbon-based anode material[D]. Nanjing:Nanjing University of Science & Technology, 2013.
[34] 孔晓英, 孙永明, 李连华, 等. 阳极材料对微生物燃料电池性能影响的研究[J]. 太阳能学报, 2011, (5):746-749. KONG X Y, SUN Y M, LI L H, et al. Study on the effect of anode material on microbial fuel cells' performance[J]. Acta Energiae Solaris Sinica, 2011, (5):746-749.
[35] 尹航, 胡翔. 不同阳极微生物燃料电池产电性能的比较[J]. 环境工程学报, 2013, (2):608-612. YIN H, HU X. Comparison of power generation performance of different types of anodes in microbial fuel cells[J]. Chinese Journal of Environmental Engineering, 2013, (2):608-612.
[36] 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, (4):1401-1407. FU G K, ZHANG L F, GUO F, et al. Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running[J]. China Environmental Science, 2017, (4):1401-1407.
[37] 王昊昱. 阳极材料的优选及其对微生物燃料电池产电性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2010. WANG H Y. Selection of anode materials and the impact of it on the power generation of single chamber microbial fuel cells[D]. Harbin:Harbin Institute of Technology, 2010.
[38] 于小雯, 盛凯旋, 陈骥, 等. 基于石墨烯修饰电极的电化学生物传感[J]. 化学学报, 2014, (3):319-332. YU X W, SHENG K X, CHEN J, et al. Electrochemical biosensing based on graphene modified electrodes[J]. Acta Chimica Sinica, 2014, (3):319-332.
[39] 侯俊先, 刘中良, 李艳霞, 等. 电活性生物膜生长过程中电荷与传质阻抗的变化规律[J]. 科学通报, 2016, 33:3616-3622. HOU J X, LIU Z L, LI Y X, et al. Charge and mass transfer impedance through different growth phases of anode-respiring biofilm[J]. Chinese Science Bulletin, 2016, 33:3616-3622.
[40] 刘中良, 周宇, 胡俊晖, 等. 应用于微生物燃料电池阳极的材料[J]. 化学与生物工程, 2015, 32(12):14-20. LIU Z L, ZHOU Y, HU J H, et al. The materials employed for anode of microbial fuel cell[J]. Chemistry & Bioengineering, 2015, 32(12):14-20.
[41] 刘忠范. 基于二维层状黑磷的高性能柔性固态超级电容器[J]. 物理化学学报, 2016, (4):817-818. LIU Z F. High performance flexibility solid supercapacitor based on two dimensional black phosphorus[J]. Acta Phys.-Chim. Sin., 2016, (4):817-818.
[1] FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52.
[2] Ken LIN, Xiaoyong XU, Qiang LI, Dinghua HU. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials [J]. CIESC Journal, 2021, 72(8): 4425-4432.
[3] Zi'ang XU, Lei WAN, Kai LIU, Baoguo WANG. Recent progress of molecular design for highly stable alkaline anion exchange membranes [J]. CIESC Journal, 2021, 72(8): 3891-3906.
[4] LIU Xuan, MA Yichang, ZHANG Qiugen, LIU Qinglin. Preparation of fullerene crosslinked quaternized polyphenylene oxide anion exchange membrane [J]. CIESC Journal, 2021, 72(7): 3849-3855.
[5] CUI Jin,SHI Chuan,ZHAO Jinbao. Research progress on the effect of mechanical pressure on the performance of lithium batteries [J]. CIESC Journal, 2021, 72(7): 3511-3523.
[6] UTAKA Yoshio, XU Jingying, WANG Guozhuo, CHEN Zhihao. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells [J]. CIESC Journal, 2021, 72(4): 2276-2282.
[7] XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J]. CIESC Journal, 2021, 72(3): 1512-1520.
[8] ZHU Pengfei, GUO Leilei, YAO Jing, YANG Fusheng, ZHANG Zaoxiao, WU Zhen. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine [J]. CIESC Journal, 2021, 72(2): 1089-1099.
[9] NAN Haoxiong, ZHAO Chenzi, YUAN Hong, LU Yang, SHEN Xin, ZHU Gaolong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress [J]. CIESC Journal, 2021, 72(1): 61-70.
[10] ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack [J]. CIESC Journal, 2021, 72(1): 589-596.
[11] LI Hui, YANG Zhengjin, XU Tongwen. Research progress of high temperature proton exchange membranes [J]. CIESC Journal, 2021, 72(1): 132-142.
[12] Chaoling HAN, Zhenqian CHEN. Effect of active carbon nanoparticles on electrochemical properties of phosphorus-nitrogen double-doped graphene [J]. CIESC Journal, 2020, 71(S1): 448-453.
[13] Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281.
[14] Xueting FENG, Qingze JIAO, Qun LI, Caihong FENG, Yun ZHAO, Hansheng LI, Haijun LI, Huiqun CAI. Preparation and sodium storage performance of NiCo2S4/N,S-rGO nanocomposites [J]. CIESC Journal, 2020, 71(9): 4314-4324.
[15] Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Zhi, ZHAO Yuanyuan, YENan, WANG Jixiao, ZHAO Zhiping, WANG Shichang. Evaluation of Four Measurement Operation Modes of Streaming  Potential for Microfiltration and Ultrafiltration Membranes[J]. , 2006, 14(4): 456 -463 .
[2] LIU Yongjian, YUAN Xigang, LUO Yiqing. Synthesis of water utilization system using concentration interval analysis method (Ⅰ)
Non-mass-transfer-based operation
[J]. , 2007, 15(3): 361 -368 .
[3] LI Yongfei, YAN Xuhui, JIANG Guofang, LIU Qiang, SONG Jianxin, GUO Cancheng. Toluene oxyfunctionalization with air over metalloporphyrins and reaction condition
optimization
[J]. , 2007, 15(3): 453 -457 .
[4] WEI Zuojun, XU shimin, YUAN Yingjin, XU Songlin. CFD Simulation of Hydrodynamic Characteristics in Stirred Reactors Equipped with Standard
Rushton or 45°-Upward PBT Impeller
[J]. , 2003, 11(4): 467 -471 .
[5] LI Tianwen, MAO Zaisha, CHEN Jiayong, FEI Weiyang. Experimental and Numerical Investigations of Single Drop Mass Transfer in Solvent
Extraction Systems with Resistance in Both Phases
[J]. , 2002, 10(1): 1 -14 .
[6] K.Smolders, D.Geldart, J.Baeyensc. The Physical Models of Cyclone Diplegs in Fluidized Beds[J]. , 2001, 9(4): 337 -347 .
[7] ZHOU Lifang, QIAN Jixin. The IMC Structure of Multi-rate Multivariable Predictive Control Systems and An Improved
Algorithm
[J]. , 2001, 9(3): 273 -279 .
[8] CHEN Zhenxing, HUANG Caijuan. The Performance of ZX Type Scale Inhibitors in Evaporation Process of Salt Electrolyte[J]. , 2001, 9(3): 280 -283 .
[9] XU Songlin, Jose Espinosa, Hector E. Salomone, Oscar A. Iribarren. Operation of a Batch Stripping Distillation Column[J]. , 2001, 9(2): 141 -144 .
[10] WANG Bingqiang, CAI Jun, LIU Honglai, HU Ying. Monte Carlo Simulations of Density Profiles for Hard-Sphere Chain Fluids Confined Between
Surfaces
[J]. , 2001, 9(2): 156 -161 .