CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2790-2796.DOI: 10.11949/j.issn.0438-1157.20171501
Previous Articles Next Articles
ZHOU Yu, LIU Zhongliang, HOU Junxian, CHEN Wenwen, LOU Xiaoge, LI Yanxia
Received:
2017-11-09
Revised:
2017-12-09
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China(516706004).
周宇, 刘中良, 侯俊先, 陈稳稳, 娄晓歌, 李艳霞
通讯作者:
刘中良
基金资助:
国家自然科学基金项目(516706004)。
CLC Number:
ZHOU Yu, LIU Zhongliang, HOU Junxian, CHEN Wenwen, LOU Xiaoge, LI Yanxia. Study of urine-powered microbial fuel cell anode modified by graphene-type novel materials[J]. CIESC Journal, 2018, 69(6): 2790-2796.
周宇, 刘中良, 侯俊先, 陈稳稳, 娄晓歌, 李艳霞. 石墨烯类材料修饰尿液微生物燃料电池阳极的研究[J]. 化工学报, 2018, 69(6): 2790-2796.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171501
[1] | MATTEO G, MILOMIR S, KAMRUL H, et al. Halotolerant extremophile bacteria from the great salt lake for recycling pollutants in microbial fuel cells[J]. Journal of Power Sources, 2017, 356:310-318. |
[2] | ZHOU Y, TANG L J, LIU Z L, et al. A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal, 2017, 124:36-43. |
[3] | HOU J X, LIU Z L, ZHANG P Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224:139-144. |
[4] | IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilisation by microbial fuel cells; energy fuel for the future[J]. Physical Chemistry Chemical Physics, 2012, 14:94-98. |
[5] | 周宇. 尿液微生物燃料电池阳极性能的研究[D]. 北京:北京工业大学, 2017. ZHOU Y. Research on anode performance of urine-powered microbial fuel cell[D]. Beijing:Beijing University of Technology, 2017. |
[6] | 常继勇. 微生物燃料电池处理生活污水特性研究[D]. 沈阳:沈阳建筑大学, 2013. CHANG J Y. The research of microbial fuel cell in treating wastewater characteristics[D]. Shenyang:Shenyang Jian Zhu University, 2013. |
[7] | 黄敏. 微生物燃料电池和废水厌氧生物处理结合的探讨[D]. 合肥:合肥工业大学, 2008. HUANG M. The integration of anaerobic microbial treatment and microbial fuel cell[D]. Hefei:Hefei University of Technology, 2008. |
[8] | IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy:the first MFC powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15:15312-15316. |
[9] | SANTORO C, IEROPOULOS I, GREENMAN J, et al. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine[J]. Journal of Power Sources, 2013, 238:190-196. |
[10] | KUNTKE P, ?MIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8):2627-2636. |
[11] | YOU J, GREENMAN J, MELHUISH C, et al. Electricity generation and struvite recovery from human urine using microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):647-654. |
[12] | YOU J, GREENMAN J, MELHUISH C, et al. Small-scale microbial fuel cells utilising uric salts[J]. Sustainable Energy Technologies and Assessments, 2014, 6:60-63. |
[13] | CHOULER J, PADGETT G A, CAMERON P J, et al. Towards effective small scale microbial fuel cells for energy generation from urine[J]. Electrochimica Acta, 2016, 192:89-98. |
[14] | PAPAHARALABOS G, GREENMAN J, MELHUISH C, et al. A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment[J]. International Journal of Hydrogen Energy, 2015, 40(11):4263-4268. |
[15] | WINFIELD J, CHAMBERS L D, STINCHCOMBE A, et al. The power of glove:soft microbial fuel cell for low-power electronics[J]. Journal of Power Sources, 2014, 249:327-332. |
[16] | TAGHAVI M, STINCHCOMBE A, GREENMAN J, et al. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC[J]. Bioinspiration & Biomimetics, 2015, 11(1):016001. |
[17] | 周宇, 刘中良, 侯俊先, 等. 化学氧化改性微生物燃料电池阳极[J]. 化工学报, 2015, 66(3):1171-1177. ZHOU Y, LIU Z L, HOU J X, et al. Microbial fuel cell anode modified by chemical oxidation[J]. CIESC Journal, 2015, 66(3):1171-1177. |
[18] | HOU J X, LIU Z L, YANG S Q, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015, 38(5):881-888. |
[19] | ZHANG C Y, LIANG P, YANG X F, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors and Bioelectronics, 2016, 81:32-38. |
[20] | ZHANG Y P, SUN J, HU Y Y, et al. Bio-cathode materials evaluation in microbial fuel cells:a comparison of graphite felt, carbon paper and stainless steel mesh materials[J]. International Journal of Hydrogen Energy, 2012, 37(22):16935-16942. |
[21] | ZHOU Y, HOU J X, CHEN W W, et al. Carbon nanotube sponge 3D anodes for urine-powered microbial fuel cell[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(14):1543-1547. |
[22] | YANG X S, MA X X, WANG K, et al. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode[J]. Electrochimica Acta, 2016, 210:846-853. |
[23] | HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258:204-209. |
[24] | HOU J X, LIU Z L, LI Y X. Polyaniline modified stainless steel fiber felt for high-performance microbial fuel cell anodes[J]. Journal of Clean Energy Technologies, 2015, 3(3):165-169. |
[25] | 刘中良, 周宇, 侯俊先, 等. 微生物燃料电池阳极的研究进展[J]. 化学与生物工程, 2013, 30(12):5-9. LIU Z L, ZHOU Y, HOU J X, et al. Research progress of anode of microbial fuel cell[J]. Chemistry & Bioengineering, 2013, 30(12):5-9. |
[26] | 莫光权. 功能化碳纳米管材料在微生物燃料电池中的应用研究[D]. 广州:华南理工大学, 2010. MO G Q. Application of functionalized carbon nanotube materials in microbial fuel cell[D]. Guangzhou:South China University of Technology, 2010. |
[27] | 侯俊先, 刘中良, 张培远. 石墨烯修饰微生物燃料电池阳极的研究[J]. 工程热物理学报, 2013, 34(7):1319-1322. HOU J X, LIU Z L, ZHANG P Y. The experimental study of graphene modified microbial fuel cell anode[J]. Journal of Engineering Thermophysics, 2013, 34(7):1319-1322. |
[28] | CI S Q, WEN Z H, CHEN J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications, 2012, 14(1):71-74. |
[29] | 涂丽杏. 微生物燃料电池纳米材料电极的制备与性能研究[D]. 广州:华南理工大学, 2013. TU L X. Preparation and performance research of nanomaterial electrodes of microbial fuel cells[D]. Guangzhou:South China University of Technology, 2013. |
[30] | 孙正博. 黑磷量子点的制备和生物应用[C]//2015中国(国际)功能材料科技与产业高层论坛摘要集. 中国仪表功能材料学会, 2015. SUN Z B. The preparation of black phosphorus quantum dot and its application on biology[C]//2015 China (International) Functional Materials Technology and Industry High-Level BBS Digest. Institute of Chinese Instrument Functional Materials, 2015. |
[31] | 侯俊先. 微生物燃料电池阳极性能的研究与优化[D]. 北京:北京工业大学, 2013. HOU J X. Study on anode performance of microbial fuel cell[D]. Beijing:Beijing University of Technology, 2013. |
[32] | 周俊. 单室微生物燃料电池阳极碳布的电化学修饰研究[D]. 广州:华南理工大学, 2014. ZHOU J. Electrochemical modification research of anode carbon cloth for single-chamber microbial fuel cells[D]. Guangzhou:South China University of Technology, 2014. |
[33] | 蔡慧. 双室微生物燃料电池碳基阳极材料的制备及其产电特性的研究[D]. 南京:南京理工大学, 2013. CAI H. Investigation about electrical properties of dual-chamber microbial fuel cell with different carbon-based anode material[D]. Nanjing:Nanjing University of Science & Technology, 2013. |
[34] | 孔晓英, 孙永明, 李连华, 等. 阳极材料对微生物燃料电池性能影响的研究[J]. 太阳能学报, 2011, (5):746-749. KONG X Y, SUN Y M, LI L H, et al. Study on the effect of anode material on microbial fuel cells' performance[J]. Acta Energiae Solaris Sinica, 2011, (5):746-749. |
[35] | 尹航, 胡翔. 不同阳极微生物燃料电池产电性能的比较[J]. 环境工程学报, 2013, (2):608-612. YIN H, HU X. Comparison of power generation performance of different types of anodes in microbial fuel cells[J]. Chinese Journal of Environmental Engineering, 2013, (2):608-612. |
[36] | 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, (4):1401-1407. FU G K, ZHANG L F, GUO F, et al. Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running[J]. China Environmental Science, 2017, (4):1401-1407. |
[37] | 王昊昱. 阳极材料的优选及其对微生物燃料电池产电性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2010. WANG H Y. Selection of anode materials and the impact of it on the power generation of single chamber microbial fuel cells[D]. Harbin:Harbin Institute of Technology, 2010. |
[38] | 于小雯, 盛凯旋, 陈骥, 等. 基于石墨烯修饰电极的电化学生物传感[J]. 化学学报, 2014, (3):319-332. YU X W, SHENG K X, CHEN J, et al. Electrochemical biosensing based on graphene modified electrodes[J]. Acta Chimica Sinica, 2014, (3):319-332. |
[39] | 侯俊先, 刘中良, 李艳霞, 等. 电活性生物膜生长过程中电荷与传质阻抗的变化规律[J]. 科学通报, 2016, 33:3616-3622. HOU J X, LIU Z L, LI Y X, et al. Charge and mass transfer impedance through different growth phases of anode-respiring biofilm[J]. Chinese Science Bulletin, 2016, 33:3616-3622. |
[40] | 刘中良, 周宇, 胡俊晖, 等. 应用于微生物燃料电池阳极的材料[J]. 化学与生物工程, 2015, 32(12):14-20. LIU Z L, ZHOU Y, HU J H, et al. The materials employed for anode of microbial fuel cell[J]. Chemistry & Bioengineering, 2015, 32(12):14-20. |
[41] | 刘忠范. 基于二维层状黑磷的高性能柔性固态超级电容器[J]. 物理化学学报, 2016, (4):817-818. LIU Z F. High performance flexibility solid supercapacitor based on two dimensional black phosphorus[J]. Acta Phys.-Chim. Sin., 2016, (4):817-818. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[3] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[4] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[5] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[6] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[7] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[8] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[9] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[10] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[11] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[12] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[13] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
[14] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
[15] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||