CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2782-2789.DOI: 10.11949/j.issn.0438-1157.20171327
Previous Articles Next Articles
WANG Hongjie1,2, GAO Yaguang1, ZHAO Zilong1, CHEN Guanhan1, DONG Wenyi1,2
Received:
2017-09-29
Revised:
2017-11-15
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the Urban Water Pollution Control and Management Generic Technology Integrated Program (2012ZX07206-002), Knowledge Innovation Program of Shenzhen Basic Research Project (JCYJ20160318093930497) and Guangdong Natural Science Foundation (2017A030310670).
王宏杰1,2, 高亚光1, 赵子龙1, 陈冠翰1, 董文艺1,2
通讯作者:
赵子龙
基金资助:
国家水体污染控制与治理科技重大专项(2012ZX07206-002);深圳市科技计划项目(JCYJ20160318093930497);广东省自然科学基金项目(2017A030310670)。
CLC Number:
WANG Hongjie, GAO Yaguang, ZHAO Zilong, CHEN Guanhan, DONG Wenyi. Effects of biochar-based catalyst preparation on oxidation degradation of Ni-EDTA[J]. CIESC Journal, 2018, 69(6): 2782-2789.
王宏杰, 高亚光, 赵子龙, 陈冠翰, 董文艺. 生物炭基催化剂制备对其催化降解Ni-EDTA性能影响[J]. 化工学报, 2018, 69(6): 2782-2789.
[1] | YE X, ZHANG J, ZHANG Y, et al. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode[J]. Chemosphere, 2016, 164:304-313. |
[2] | RUI S R, SILVA A M T, FIGUEIREDO J L, et al. Catalytic wet peroxide oxidation:a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review[J]. Applied Catalysis B:Environmental, 2016, 187:428-460. |
[3] | VALKAJ K M, KATOVI? A, ZRN?EVI? S. Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(8):4390-4397. |
[4] | PESTUNOVA O P, OGORODNIKOVA O L, PARMON V N. Studies on the phenol wet peroxide oxidation in the presence of solid catalysts[J]. Chemistry for Sustainable Development, 2003, 11:227-232. |
[5] | SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE Journal, 2013, 59(7):2577-2586. |
[6] | WANG Y, WEI H, LIU P, et al. Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol[J]. Catalysis Today, 2015, 258:120-131. |
[7] | DOMÍNGUEZ C M, OCÓN P, QUINTANIL A A, et al. Graphite and carbon black materials as catalysts for wet peroxide oxidation[J]. Applied Catalysis B:Environmental, 2014, 144:599-606. |
[8] | SILVA A M T, HERNEY-RAMIREZ J, SÖYLEMEZ U, et al. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7[J]. Applied Catalysis B:Environmental, 2012, 121/122:10-19. |
[9] | ZHOU S, QIAN Z, SUN T, et al. Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite[J]. Applied Clay Science, 2011, 53(4):627-633. |
[10] | TARAN O P, AYUSHEEV A B, OGORODNIKOVA O L, et al. Perovskite-like catalysts LaBO3, (B=Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol[J]. Applied Catalysis B:Environmental, 2016, 180:86-93. |
[11] | HO?EVAR S, KRASOVEC U, OREL B. CWO of phenol on two differently prepared CuO-CeO2 catalysts[J]. Applied Catalysis B:Environment, 2000, 28:113-125. |
[12] | MARTIN-MARTINEZ M, RIBEIRO R S, MACHADO B F, et al. Role of nitrogen doping on the performance of carbon nanotube catalysts:a catalytic wet peroxide oxidation application[J]. ChemCatChem, 2016, 8(12):2068-2078. |
[13] | ZHANG X, YAN Q, HASSAN E B, et al. Temperature effects on formation of carbon-based nanomaterials from kraft lignin[J]. Materials Letters, 2017, 203:42-45. |
[14] | ZAZO J A, BEDIA J, FIERRO C M, et al. Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3, activation of lignin from black liquors[J]. Catalysis Today, 2012, 187(1):115-121. |
[15] | ZHANG G, LI Z, ZHENG H, et al. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate[J]. Applied Surface Science, 2016, 390:68-77. |
[16] | ZHAO Z, CANNON F S, NIETO-DELGADO C. Co-pyrolysis characteristics and kinetics of lignin and collagen[J]. Journal of Analytical & Applied Pyrolysis, 2016, 120:501-510. |
[17] | FOX J T, CANNON F S, BROWN N R, et al. Comparison of a new, green foundry binder with conventional foundry binders[J]. International Journal of Adhesion & Adhesives, 2012, 34(4):38-45. |
[18] | 王季茹, 郭少青, 康荷菲, 等. SiO2负载CeO2催化氧化芴制备芴酮[J]. 化工进展, 2017, 36(6):2183-2189. WANG J R, GUO S Q, KANG H F, et al. Aerobic oxidation of 9H-fluorene to 9-fluorenone using SiO2-supported CeO2 catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2183-2189. |
[19] | ZHAO Z, CANNON F S, NIETO-DELGADO C, et al. Lignin/collagen hybrid biomaterials as binder substitute for specialty graphites and electrodes[J]. Carbon, 2016, 108:303-317. |
[20] | PRIYANKA, SUBBARAMAIAH V, SRIVASTAVA V C, et al. Catalytic oxidation of nitrobenzene by copper loaded activated carbon[J]. Separation & Purification Technology, 2014, 125(14):284-290. |
[21] | ZHAO X, TAN Y, WU F, et al. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance[J]. Science of the Total Environment, 2016, 571:380-387. |
[22] | GHODSELAHI T, VESAGHI M A, SHAFIEKHANI A. Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory[J]. Logos:Anales del Seminario de Metafísica, 2009, 5(2):157-180. |
[23] | 李遥, 费会, 骆沁沁, 等. Fe-Cu/AC非均相催化剂制备及CWPO法深度处理印染废水[J]. 浙江大学学报(理学版), 2013, 40(6):676-680. LI Y, FEI H, LUO Q Q, et al. Preparation of Fe-Cu/activated carbon and advanced treatment of printing and dyeing wastewater by CWPO[J]. Journal of Zhejiang University (Science Edition), 2013, 40(6):676-680. |
[24] | ESPINÓS J P, MORALES J, BARRANCO A, et al. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. Journal of Physical Chemistry B, 2002, 106(27):6921-6929. |
[25] | SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11):1469-1482. |
[26] | 李忠, 牛燕燕, 郑华艳, 等. 表面改性对Cu/活性炭催化剂表面Cu物种和催化活性的影响[J]. 无机化学学报, 2011, 27(7):1277-1284. LI Z, NIU Y Y, ZHENG H Y, et al. Influence of modification of activated carbon surface on Cu species and catalytic activity of Cu/AC catalyst[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(7):1277-1284. |
[27] | HU J, SHEN D, WU S, et al. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin[J]. Journal of Analytical & Applied Pyrolysis, 2014, 106(3):118-124. |
[28] | JIANG W, LI Y, HAN W F, et al. Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst[J]. Journal of Energy Chemistry, 2014, 23(4):443-452. |
[29] | YIN A, GUO X, DAI W L, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:new insights on the synergetic effect between Cu0 and Cu+[J]. Journal of Chemical Physics, 2009, 113(25):11003-11013. |
[30] | LI F, LU C S, LI X N. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11):1461-1465. |
[31] | TU C H, WANG A Q, ZHENG M Y, et al. Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation[J]. Applied Catalysis A:General, 2006, 297(1):40-47. |
[32] | NASIR M, SUBHAN A, PRIHANDOKO B, et al. Nanostructure and property of electrospun SiO2-cellulose acetate nanofiber composite by electrospinning[J]. Energy Procedia, 2017, 107:227-231. |
[33] | WANG S, WANG K, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnology Advances, 2009, 27(5):562-567. |
[34] | DOBSON K D, MCQUILLAN A J. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2000, 56(3):557-565. |
[35] | HUANG X, XU Y, SHAN C, et al. Coupled Cu(Ⅱ)-EDTA degradation and Cu(Ⅱ) removal from acidic wastewater by ozonation:performance, products and pathways[J]. Chemical Engineering Journal, 2016, 299:23-29. |
[36] | XU Z, SHAN C, XIE B, et al. Decomplexation of Cu(Ⅱ)-EDTA by UV/persulfate and UV/H2O2:efficiency and mechanism[J]. Applied Catalysis B:Environmental, 2017, 200:439-447. |
[37] | LI L, HUANG Z, FAN X, et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231:354-362. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 502
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||