CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 332-341.DOI: 10.11949/0438-1157.20210961
• Process system engineering • Previous Articles Next Articles
Kefan ZHAO1,2(),Shengkun JIA1,2(),Yiqing LUO1,2,Xigang YUAN1,2,3()
Received:
2021-07-11
Revised:
2021-09-16
Online:
2022-01-18
Published:
2022-01-05
Contact:
Shengkun JIA,Xigang YUAN
赵克凡1,2(),贾胜坤1,2(),罗祎青1,2,袁希钢1,2,3()
通讯作者:
贾胜坤,袁希钢
作者简介:
赵克凡(1997—),男,硕士研究生,基金资助:
CLC Number:
Kefan ZHAO, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimal design for dividing wall column using online Kriging surrogate model-based optimization method[J]. CIESC Journal, 2022, 73(1): 332-341.
赵克凡, 贾胜坤, 罗祎青, 袁希钢. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341.
参数 | 值 |
---|---|
进料流量/(kmol/h) | 300 |
进料组成(摩尔分数): | |
苯 | 0.3333 |
甲苯 | 0.3334 |
对二甲苯 | 0.3333 |
进料压力/bar | 1 |
进料温度/K | 365.93 |
物性方法 | PR |
分离要求: | |
塔顶苯纯度 | ≥99% |
侧线甲苯纯度 | ≥99% |
塔釜对二甲苯纯度 | ≥99% |
Table 1 Feed conditions and product requirements
参数 | 值 |
---|---|
进料流量/(kmol/h) | 300 |
进料组成(摩尔分数): | |
苯 | 0.3333 |
甲苯 | 0.3334 |
对二甲苯 | 0.3333 |
进料压力/bar | 1 |
进料温度/K | 365.93 |
物性方法 | PR |
分离要求: | |
塔顶苯纯度 | ≥99% |
侧线甲苯纯度 | ≥99% |
塔釜对二甲苯纯度 | ≥99% |
参数 | 传统离线代理模型优化 | 本文在线代理模型优化 | |||
---|---|---|---|---|---|
预分离塔 | 主塔 | 预分离塔 | 主塔 | ||
塔板数 | 30 | 63 | 37 | 64 | |
进料位置 | 16 | — | 19 | — | |
耦合物流连接位置 | 1,30 | 17,49 | 1,37 | 14,51 | |
侧采位置 | — | 33 | — | 32 | |
回流比 | — | 3.324 | — | 3.058 | |
回预分离塔液相流量/(kmol/h) | 115.996 | 116.2478 | |||
回预分离塔气相流量/(kmol/h) | 230.000 | 240.0216 | |||
冷凝器负荷/kW | 4732.886 | 4457.86 | |||
再沸器负荷/kW | 4710.554 | 4434.33 | |||
真实TAC/(106 USD/a) | 2.409 | 2.279 | |||
Kriging预测TAC/(106 USD/a) | 0.941 | 2.279 | |||
Aspen Plus总调用次数 | 200 | 200 |
Table 2 The results of optimization
参数 | 传统离线代理模型优化 | 本文在线代理模型优化 | |||
---|---|---|---|---|---|
预分离塔 | 主塔 | 预分离塔 | 主塔 | ||
塔板数 | 30 | 63 | 37 | 64 | |
进料位置 | 16 | — | 19 | — | |
耦合物流连接位置 | 1,30 | 17,49 | 1,37 | 14,51 | |
侧采位置 | — | 33 | — | 32 | |
回流比 | — | 3.324 | — | 3.058 | |
回预分离塔液相流量/(kmol/h) | 115.996 | 116.2478 | |||
回预分离塔气相流量/(kmol/h) | 230.000 | 240.0216 | |||
冷凝器负荷/kW | 4732.886 | 4457.86 | |||
再沸器负荷/kW | 4710.554 | 4434.33 | |||
真实TAC/(106 USD/a) | 2.409 | 2.279 | |||
Kriging预测TAC/(106 USD/a) | 0.941 | 2.279 | |||
Aspen Plus总调用次数 | 200 | 200 |
公用工程 | 费用/(USD/GJ) |
---|---|
冷却水(25~30℃) | 0.354 |
低压蒸汽(5 bar, 160℃) | 13.28 |
中压蒸汽(10 bar, 184℃) | 14.19 |
高压蒸汽(41 bar, 254℃) | 17.7 |
电(110~440 V) | 16.8 |
Table A1 Utility cost
公用工程 | 费用/(USD/GJ) |
---|---|
冷却水(25~30℃) | 0.354 |
低压蒸汽(5 bar, 160℃) | 13.28 |
中压蒸汽(10 bar, 184℃) | 14.19 |
高压蒸汽(41 bar, 254℃) | 17.7 |
电(110~440 V) | 16.8 |
12 | Javaloyes-Antón J, Ruiz-Femenia R, Caballero J A. Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15621-15634. |
13 | Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273: 123041. |
14 | Wang H H, Wang Z B, Zhou Q, et al. Optimization and sliding mode control of dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 20102-20111. |
15 | Sun L Y, Wang Q Y, Li L M, et al. Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8120-8131. |
16 | Quirante N, Javaloyes J, Caballero J A. Rigorous design of distillation columns using surrogate models based on Kriging interpolation[J]. AIChE Journal, 2015, 61(7): 2169-2187. |
17 | Quirante N, Caballero J A. Large scale optimization of a sour water stripping plant using surrogate models[J]. Computers & Chemical Engineering, 2016, 92: 143-162. |
18 | Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
19 | Muñoz R, Montón J B, Burguet M C, et al. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: simulation and optimization[J]. Separation and Purification Technology, 2006, 50(2): 175-183. |
20 | Xia M, Yu B R, Wang Q Y, et al. Design and control of extractive dividing-wall column for separating methylal-methanol mixture[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 16016-16033. |
21 | Turton R, Bailie R C, Whiting W B, et al. Analysis, Synthesis and Design of Chemical Processes[M]. New York: Prentice Hall, 2008. |
22 | Douglas J M. The Conceptual Design of Chemical Processes[M]. New York: McGraw Hill,1998. |
23 | Sacks J, Welch W J,Mitchell T J,et al. Design and analysis of computer experiments[J].Statistical Science,1989,4(4):409-423. |
1 | Asprion N, Kaibel G. Dividing wall columns: fundamentals and recent advances[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 139-146. |
2 | Dejanović I, Matijašević L, OlujićŽ. Dividing wall column—a breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(6): 559-580. |
3 | Ho Y C, Ward J D, Yu C C. Quantifying potential energy savings of divided wall columns based on degree of remixing[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1473-1487. |
4 | Kiss A A, Ignat R M. Enhanced methanol recovery and glycerol separation in biodiesel production—DWC makes it happen[J]. Applied Energy, 2012, 99: 146-153. |
5 | Kiss A A, Ignat R M, Flores Landaeta S J, et al. Intensified process for aromatics separation powered by Kaibel and dividing-wall columns[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 39-48. |
6 | Schultz M A, Stewart D G, Harris J M,et al. Reduce costs with dividing-wall columns[J]. Chem. Eng. Prog., 2002,98:64-71. |
7 | 王磊. 三组元最优精馏结构筛选的通用分离因子与定量化规则[D]. 天津: 天津大学, 2019. |
Wang L. Generalized ease of separation index and quantitative rules for selection of optimal ternary-distillation configuration[D]. Tianjin: Tianjin University, 2019. | |
8 | 陈熙理, 孙国铭, 贾胜坤, 等. 基于决策树的三组元精馏序列结构最优合成规则识别[J]. 化工学报, 2021, 72(3): 1430-1437. |
Chen X L, Sun G M, Jia S K, et al. Identification of rules for optimal synthesis of ternary-distillation configuration based on decision tree[J]. CIESC Journal, 2021, 72(3): 1430-1437. | |
9 | Ge X L, Yuan X G, Ao C, et al. Simulation based approach to optimal design of dividing wall column using random search method[J]. Computers & Chemical Engineering, 2014, 68: 38-46. |
10 | Jia S K, Qian X, Yuan X G. Optimal design for dividing wall column using support vector machine and particle swarm optimization[J]. Chemical Engineering Research and Design, 2017, 125: 422-432. |
11 | Becker H, Godorr S, Kreis H. Partitioned distillation columns—why, when & how[J]. Chem. Eng., 2001, 108(1): 68-74. |
24 | Krige D G. A statistical approach to some mine valuations and allied problems at the Witwatersrand[J].Journal of the Chemical, Metallurgical and Mining Engineering Society of South Africa, 1951, 52(6):119-139. |
25 | Toal D J J, Bressloff N W, Keane A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5): 1240-1252. |
26 | Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50-79. |
27 | Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. |
28 | Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. |
29 | Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[J]. Dept. Comput. Sci.,2010(12):1012,2599. |
30 | Keane A, Forrester A, Sobester A. Engineering Design via Surrogate Modelling: A Practical Guide[M]. Washington, DC: AIAA, Inc., 2008. |
31 | Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39(3): 308-319. |
32 | Iman R L, Helton J C, Campbell J E. An approach to sensitivity analysis of computer models(I):Introduction, input variable selection and preliminary variable assessment[J]. Journal of Quality Technology, 1981, 13(3): 174-183. |
33 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
Han Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. | |
34 | Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine Learning[M]. Massachusetts: Addison-Wesley Professional,1989. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[14] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 367
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||