CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 8-14.doi: 10.11949/j.issn.0438-1157.20180794

Previous Articles     Next Articles

Prediction of phase equilibrium of gas hydrates based on different equations of state

LI Siguang1, LI Yanjun1, YANG Longbin1, SHAO Yazhou1, SUN Jianrong1, XU Runzhang2   

  1. 1 College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China;
    2 College of Science, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2018-07-13 Revised:2018-07-20 Online:2018-09-30 Published:2018-09-30
  • Supported by:

    supported by the National Natural Science Foundation of China (51579048) and the Fundamental Research Funds for Central Universities (HEUCFG201819).

Abstract:

The fugacity calculation results will directly affect the prediction accuracy of the phase equilibria of gas hydrates. Based on the Chen-Guo model, four equations of state (RK, SRK, PR and PT EOS) are used to calculate the fugacity, then to predict the phase equilibria of methane, ethane and carbon dioxide gas hydrates in different temperature ranges, respectively. Results show that for pure water system the model with RK EOS is most suitable for predicting the phase equilibria of methane hydrate, while PR EOS is more suitable for the prediction of ethane and carbon dioxide hydrates. For ice system, SRK EOS is the most suitable for methane hydrate but the prediction below 218.2 K is the main reason for the low prediction accuracy. PR EOS suits the prediction of ethane hydrate and the prediction accuracy for the case below 230.2 K still needs to be improved. And RK EOS is suitable for predicting carbon dioxide hydrate, the prediction accuracy will be improved further if the prediction results below 270.7 K can be much closer to the experimental data.

Key words: gas, hydrate, phase equilibria, equation of state, prediction, fugacity

CLC Number: 

  • TQ026
[1] SLOAN E D J, KOH C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton:CRC Press, 2007.
[2] HAMMERSCHMIDT E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry, 1934, 26:851-855.
[3] 张刘樯, 师凌冰, 周迎. 天然气水合物生成预测及防治技术[J]. 天然气技术, 2007, 1(6):67-69. ZHANG L Q, SHI L B, ZHOU Y. Formation prediction and prevention technology of natural gas hydrate[J]. Natural Gas Technology, 2007, 1(6):67-69.
[4] DEJEAN J P, AVERBUCH D, GAINVILLE M, et al. Integrating flow assurance into risk management of deep offshore field developments[R]. OTC, 2005.
[5] 邵明娟, 张炜, 吴西顺,等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016, (12):17-19. SHAO M J, ZHANG W, WU X S, et al. Natural gas hydrate exploitation at Messoyakha gas field[J]. Land and Resources Information, 2016, (12):17-19.
[6] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5):513-520. ZHU Y H. Production test from gas hydrate of Mackenzie Permafrost Canda[J]. Advances in Earth Science, 2006, 21(5):513-520.
[7] JIANG H, ADIDHARMA H. Prediction of hydrate dissociation conditions for alkanes in the presence of alcohol and electrolyte solutions using ion-based statistical associating fluid theory[J]. Chemical Engineering Science, 2012, 82(1):14-21.
[8] 宋永臣, 杨明军, 刘瑜,等. 离子对甲烷水合物相平衡的影响[J]. 化工学报, 2009, 60(6):1362-1366. SONG Y C, YANG M J, LIU Y, et al. Influence of ions on phase equilibrium of methane hydrate[J]. CIESC Journal, 2009, 60(6):1362-1366.
[9] CHA M J, HU Y, SUM A K. Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl[J]. Fluid Phase Equilibria, 2016, 413:2-9.
[10] BARMAVATH T, MEKALA P, SANGWAI J S. Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[J]. Journal of Natural Gas Science & Engineering, 2014, 18(14):254-262.
[11] ZHANG Y, LI X S, WANG Y, et al. Decomposition conditions of methane hydrate in marine sediments from South China Sea[J]. Fluid Phase Equilibria, 2016, 413:110-115.
[12] SUN S C, KONG Y Y, ZHANG Y, et al. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J]. J. Chem. Thermodynamics, 2015, 90:116-121.
[13] SHEIDA S, NURUL H. Gas hydrate formation condition:review on experimental and modeling approaches[J]. Fluid Phase Equilibria, 2014, 379:72-85.
[14] YANG M J, SONG Y C, LIU Y, et al. Equilibrium conditions for CO2 hydrate in porous medium[J]. J. Chem. Thermodynamics, 2011, 43:334-338.
[15] SUN S C, LIU C L, YE Y G, et al. Phase behavior of methane hydrate in silica sand[J]. J. Chem. Thermodynamics, 2014, 69:118-124.
[16] SUN S C, LIU C L, YE Y G. Phase equilibrium condition of marine carbon dioxide hydrate[J]. J. Chem. Thermodynamics, 2013, 57:256-260.
[17] VAN DER WAALS J H, PLATTEEUW J C. Clathrate solutions[J]. Adv. Chem. Phys., 1959, 2(1):2-57.
[18] CHEN G J, GUO T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1/2):43-65.
[19] CHEN G J, GUO T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2):145-151.
[20] 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京:化学工业出版社, 2008. CHEN G J, SUN C Y, MA Q L. Clathrate hydrates of natural gases[M]. Beijing:Chemical Industry Press, 2008.
[21] KLAUDA J B, SANDLER S I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9):3377-3386.
[22] NAGHIBZADE S A, KAHRIZI H, MEHR A S. Comparison of different equations of state in a model based on VdW-P for prediction of CO2, hydrate formation pressure in Lw-H-V phase and a new correlation to degrade error of the model[J]. Journal of Natural Gas Science & Engineering, 2015, 22(6):292-298.
[23] PANG J Y, NG H J, ZUO J L, et al. Hydrogen gas hydrate-measurements and predictions[J]. Fluid Phase Equilibria, 2012, 316:6-10.
[24] JOSHI A, MEKALA P, SANGWAI J S. Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide[J]. Journal of Natural Gas Chemistry, 2012, 21(4):459-465.
[25] AVULA V R, GARDAS R L, SANGWAI J S. An improved model for the phase equilibrium of methane hydrate inhibition in the presence of ionic liquids[J]. Fluid Phase Equilibria, 2014, 382:187-196.
[26] AVULA V R, GARDAS R L, SANGWAI J S. An efficient model for the prediction of CO2 hydrate phase stability conditions in the presence of inhibitors and their mixtures[J]. J. Chem. Thermodynamics, 2015, 85:163-170.
[27] SHI L L, LIANG D Q. Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates[J]. Fluid Phase Equilibria, 2015, 386:149-154.
[28] KUUSTRAA V A, HAMMERSHAIMB E C. Handbook of gas hydrate properties and occurrence[R]. USA, 1983.
[29] THAKRE N, JANA A K. Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates:experimental validation[J]. Applied Energy, 2017, 205:749-760.
[30] PATEL N C, TEJA A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chemical Engineering Science, 1982, 37(3):463-473.
[31] 刘志安. 天然气水合物生成机理和热力学模型研究[D]. 青岛:中国石油大学(华东), 2007. LIU Z A. Research on natural gas hydrate formation and thermodynamics model[D]. Qingdao:China University of Petroleum, 2007.
[1] LIN Encheng, WANG Wen, KUANG Yiwu, SHI Yumei, ZHUAN Rui, SUN Lijie. Numerical analysis of cryogenic two-phase precooling flow in a mini pipe [J]. CIESC Journal, 2021, 72(S1): 153-160.
[2] WU Di, HU Bin, WANG Ruzhu, YU Jingjing, LIN Xinyi, LI Ziliang. Theoretical study and performance comparison of different heat pump cycles using water as working fluid [J]. CIESC Journal, 2021, 72(S1): 236-243.
[3] ZHANG Yi, ZHANG Guanmin, LIU Lei, LIANG Kai, QU Xiaohang, TIAN Maocheng. Gas-liquid falling film flow characteristics on surface of multi-row plane finned-tube heat exchanger: a 3D numerical study [J]. CIESC Journal, 2021, 72(S1): 278-294.
[4] HAI Peng, LI Zhenxing, LI Ke, HUANG Hongmei, ZHENG Wenshuai, GAO Xinqiang, DAI Wei, SHEN Jun. Simulation and optimization of multilayer active magnetic regenerator [J]. CIESC Journal, 2021, 72(S1): 302-309.
[5] HE Ting, LIN Wensheng. Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization [J]. CIESC Journal, 2021, 72(S1): 453-460.
[6] ZHANG Jingwei, LIU Yongyang, LIU Dong, SHAO Guodong, LI Yuanlu, LIU Fangchen, DU Wenjing. Condensation performance of low temperature boiler flue gas containing SO2 on vertical wall [J]. CIESC Journal, 2021, 72(S1): 475-481.
[7] LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20.
[8] YAN Ziteng, WU Guoming, ZHUANG Dawei, DING Guoliang, CAO Fali, MENG Jianjun. Design method and application effects of cyclic channel distributor for micro-channel heat exchangers [J]. CIESC Journal, 2021, 72(S1): 77-83.
[9] JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105.
[10] Lanping ZHAO, Bentao GUO, Zhigang YANG. Effect of structure on the performance of inner condenser for heat pump of EV [J]. CIESC Journal, 2021, 72(9): 4616-4628.
[11] Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network [J]. CIESC Journal, 2021, 72(9): 4649-4657.
[12] Wenlong ZHANG, Yan HOU, Haibo JIN, Lei MA, Guangxiang HE, Suohe YANG, Xiaoyan GUO, Rongyue ZHANG. Numerical simulation of air-water two-phase flow under elevated pressures and temperatures using CFD-PBM coupled model [J]. CIESC Journal, 2021, 72(9): 4594-4606.
[13] Hai ZHANG, Ying XU, Tao ZHANG, Cenwei SUN, Chuanshun WEI, Zhixiang DAI. Investigation of visualized-measurement merits of wire mesh sensor for gas-liquid flow [J]. CIESC Journal, 2021, 72(9): 4573-4583.
[14] Yanhong WANG, Kai YAO, Xuemei LANG, Shuanshi FAN. Investigation on hydrate-based methane storage properties in water-in-oil emulsion with high water content [J]. CIESC Journal, 2021, 72(9): 4872-4880.
[15] Chenxu GENG, Yuxiu SUN, Hongliang HUANG, Xiangyu GUO, Zhihua QIAO, Chongli ZHONG. Mechanochemically synthesized small sized MOF fillers assisted for highly efficient CO2 separation [J]. CIESC Journal, 2021, 72(9): 4750-4758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Zhichang, MENG Xianghai, XU Chunming, GAO Jinsen. Secondary Cracking of Gasoline and Diesel from Heavy Oil Catalytic Pyrolysis[J]. , 2007, 15(3): 309 -314 .
[2] LIU Yongjian, YUAN Xigang, LUO Yiqing. Synthesis of water utilization system using concentration interval analysis method (Ⅱ)
Discontinuous process
[J]. , 2007, 15(3): 369 -375 .
[3] QIN Wei, LI Zhenyu, WANG Min, DAI Youyuan. Extraction Behavior and Wastewater Treatment of Amino Sulfonic Acid with Alamine 336[J]. , 2004, 12(1): 137 -142 .
[4] WANG Fei, WANG Wenchuan, HUANG Shiping, TENG Jiawei, XIE Zaiku. Experiment and modeling of pure and binary adsorption of n-butane and butene-1 on ZSM-5
zeolites with different Si/Al ratios
[J]. , 2007, 15(3): 376 -386 .
[5] LI Liangzhi, QIAO Bin, YUAN Yingjin. Nitrogen sources affect streptolydigin production and related secondary metabolites
distribution of Streptomyces lydicus AS 4.2501
[J]. , 2007, 15(3): 403 -410 .
[6] SUN Guogang, SHI Mingxian. Influence of Feed Injection on Hydrodynamic Behavior in FCC Riser[J]. , 2003, 11(6): 638 -642 .
[7] ZHAN Xinmin, ZHAO Xuan, AKANE Miyazaki, YOSHIO Nakano. Lead Removal from Aqueous Solutions Using Novel Gel Adsorbent Synthesized from Natural
Condensed Tannin
[J]. , 2003, 11(4): 426 -430 .
[8] CAI Zhenyun, LU Zuguo, LI Xiaobo. Preparation of Ethylene Glycol Monoethyl Ether Acetate Using a Tubular Reactor[J]. , 2003, 11(3): 338 -340 .
[9] JI Xiuling, ZHANG Jinli, LI Wei, HAN Zhenting, WANG Yiping. Effects of Substrate Permeation on Kinetics of Phenol Biodegradation[J]. , 2003, 11(2): 151 -155 .
[10] JIANG Yongheng, WANG Jun, JIN Yihui. Bottleneck Analysis of the Minimum Cost Problem for the Generalized Network Based on
Augmented Forest Structure
[J]. , 2003, 11(1): 62 -67 .