1 |
PachauriR K, AllenM, BarrosV, et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC2014[R].
|
2 |
RochelleG T. Amine scrubbing for CO2 capture [J]. Science, 2009, 325(5948): 1652-1654.
|
3 |
LiB Y, DuanY H, LuebkeD, et al. Advances in CO2 capture technology: a patent review [J]. Applied Energy, 2013, 102: 1439-1447.
|
4 |
LiT Y, KeenerT C. A review: desorption of CO2 from rich solutions in chemical absorption processes [J]. Int. J. Greenhouse Gas Control, 2016, 51: 290-304.
|
5 |
MondalM K, BalsoraH K, VarshneyP. Progress and trends in CO2 capture/separation technologies: a review [J]. Energy, 2012, 46 (1): 431-441.
|
6 |
AaronD, TsourisC. Separation of CO2 from flue gas: a review [J]. Sep. Sci. Technol., 2005, 40(1/2/3): 321-348.
|
7 |
HaszeldineR S. Carbon capture and storage: how green can black be? [J]. Science, 2009, 325(5948): 1647-1652.
|
8 |
Abu-ZahraM R M, NiedererJ P M, FeronP H M, et al. CO2 capture from power plants (Ⅱ): A parametric study of the economical performance based on mono-ethanolamine [J]. Int. J. Greenhouse Gas Control, 2007, 1(2): 135-142.
|
9 |
BieringerT, BuchholzS, KockmannN. Future production concepts in the chemical industry: modular-small-scale-continuous [J]. Chemical Engineering & Technology, 2013, 36(6): 900-910.
|
10 |
YaoC Q, DongZ Y, ZhaoY C, et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures [J]. Chem. Eng. Sci., 2015, 123: 137-145.
|
11 |
ChenG W, YueJ, YuanQ. Gas-liquid microreaction technology: recent developments and future challenges [J]. Chin. J. Chem. Eng., 2008, 16(5): 663-669.
|
12 |
陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象 [J]. 化工学报, 2013, 64(1): 63-75.
|
|
ChenG W, ZhaoY C, YueJ, et al. Transport phenomena in micro-chemical engineering [J]. CIESC Journal, 2013, 64(1): 63-75.
|
13 |
董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化 [J]. 化工学报, 2018, 69(1): 102-115.
|
|
DongZ Y, ChenG W, ZhaoS N, et al. Sonochemical microreactor — synergistic intensification ofultrasound and microreactor [J]. CIESC Journal, 2018, 69(1): 102-115.
|
14 |
ZhaoS N, DongZ Y, YaoC Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement [J]. AIChE Journal, 2018, 64(4): 1412-1423.
|
15 |
ZanfirM, GavriilidisA, WilleC, et al. Carbon dioxide absorption in a falling film microstructured reactor: experiments and modeling [J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1742-1751.
|
16 |
ConstantinouA, BarrassS, PronkF, et al. CO2 absorption in a high efficiency silicon nitride mesh contactor [J]. Chem. Eng. J., 2012, 207: 766-771.
|
17 |
YeC B, ChenG W, YuanQ. Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor [J]. Chin. J. Chem. Eng., 2012, 20(1): 111-119.
|
18 |
TegrotenhuisW, CameronR, ViswanathanV, et al. Solvent extraction and gas absorption using microchannel contactors[M]//Microreaction Technology: Industrial Prospects.Berlin: Springer, 2000:541-549.
|
19 |
LinG Y, JiangS, ZhuC Y, et al. Mass transfer characteristics of CO2 absorption into aqueous solutions of N-methyldiethanolamine+diethanolamine in a T-junction microchannel [J]. ACS Sustainable Chem. Eng., 2019, 7(4): 4368-4375.
|
20 |
KenigE Y, SuY H, LautenschlegerA, et al. Micro-separation of fluid systems: a state-of-the-art review [J]. Sep. Sci. Technol., 2013, 120: 245-264.
|
21 |
NguyenD T, Esser-kahnA P. A microvascular system for chemical reactions using surface waste heat [J]. Angew. Chem. Int. Ed., 2013, 52(51): 13731-13734.
|
22 |
LiuH C, YaoC Q, ZhaoY C, et al. Desorption of carbon dioxide from aqueous MDEA solution in a microchannel reactor [J]. Chem. Eng. J., 2017, 307: 776-784.
|
23 |
LiuH C, ZhaoS N, ZhouF, alet, Ultrasonic enhancement ofCO2 desorption from MDEA solution in microchannels [J]. Ind. Eng. Chem. Res.,2019, 58(4):1711-1719.
|
24 |
ZhangJ F, QiaoY, AgarD W. Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture [J]. Chemical Engineering Research and Design, 2012, 90(6): 743-749.
|
25 |
ShaoN, GavriilidisA, AngeliP. Flow regimes for adiabatic gas-liquid flow in microchannels [J]. Chem. Eng. Sci., 2009, 64(11): 2749-2761.
|
26 |
ZhaoY C, ChenG W, YeC B, et al. Gas-liquid two-phase flow in microchannel at elevated pressure [J]. Chem. Eng. Sci., 2013, 87: 122-132.
|
27 |
TriplettK, GhiaasiaanS, Abdel-khalikS, et al. Gas-liquid two-phase flow in microchannels (Ⅰ): Two-phase flow patterns [J]. Int. J. Multiphase Flow, 1999, 25(3): 377-394.
|
28 |
YueJ, ChenG W, YuanQ, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Chem. Eng. Sci., 2007, 62(7): 2096-2108.
|
29 |
CubaudT, HoC M. Transport of bubbles in square microchannels [J]. Physics of Fluids, 2004, 16(12): 4575-4585.
|
30 |
WuH, ChengP. Visualization and measurements of periodic boiling in silicon microchannels [J]. Int. J. Heat Mass Transfer, 2003, 46(14): 2603-2614.
|