化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4306-4314.DOI: 10.11949/0438-1157.20190425

• 过程系统工程 • 上一篇    下一篇

芳烃分子描述符的修正和沸点预测建模

马香成(),秦蔚,陈清林,张冰剑()   

  1. 中山大学材料科学与工程学院,广东省石化节能工程技术研究中心,广东 广州 519082
  • 收稿日期:2019-04-24 修回日期:2019-07-04 出版日期:2019-11-05 发布日期:2019-11-05
  • 通讯作者: 张冰剑
  • 作者简介:马香成(1995—),女,硕士研究生,15671684012@163.com
  • 基金资助:
    国家自然科学基金项目(21776323)

Modification of molecular descriptor and modeling for boiling point prediction of aromatic hydrocarbons

Xiangcheng MA(),Wei QIN,Qinglin CHEN,Bingjian ZHANG()   

  1. School of Materials Science and Engineering, Guangdong Engineering Center for Petrochemical Energy Conservation, Sun Yat-sen University, Guangzhou 519082, Guangdong, China
  • Received:2019-04-24 Revised:2019-07-04 Online:2019-11-05 Published:2019-11-05
  • Contact: Bingjian ZHANG

摘要:

根据芳烃分子中碳原子所处化学环境的差异,修正分子描述符Randi?连接性指数中碳原子支化度参数δi ,提出新的分子描述符Modran;通过对比分析表明描述符Modran对芳烃分子的化学结构具有更好的选择性。分析芳烃沸点的影响因素,采用最优子集选择法,发现Modran一阶和二阶支化度指数、分子极化率和芳环碳原子占比四个分子描述符参数的组合对芳烃沸点具有良好的预测能力,进而建立包含Modran等四分子描述符的线性组合模型和神经网络模型。与Marrero-Pardillo基团贡献法比较,四分子描述符的神经网络模型将芳烃沸点预测的平均绝对误差由12.26 K降低到4.56 K。

关键词: 分子描述符, 芳烃, 沸点预测, 构效关系, 神经网络

Abstract:

According to the differences of chemical environment of carbon atoms in aromatic hydrocarbons, the carbon atom branching degree index δi in the Randi? connectivity index is modified, and a new molecular descriptor Modran is presented. Comparative analysis shows that the descriptor Modran has better selectivity for the chemical structure of aromatic molecules. Through analyzing the factors influencing the boiling points of aromatic hydrocarbons and using the best subset selection method, it is found that the combination of four molecular descriptors, such as Modran first-order and second-order branching index, molecular polarizability and aromatic ring carbon atom ratio, has good predictive ability for aromatics boiling point, and then linear combination model and neural network model including the four descriptors are established. Compared with the Marrero-Pardillo group contribution method, the neural network model of the four-molecule descriptor reduces the average absolute error of the boiling point prediction of aromatics from 12.26 K to 4.56 K.

Key words: molecular descriptor, aromatic hydrocarbons, boiling point prediction, quantitative structure-property relationship, neural network

中图分类号: