化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4315-4324.DOI: 10.11949/0438-1157.20190268
收稿日期:
2019-03-26
修回日期:
2019-07-20
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
范峥
作者简介:
范峥(1982—),男,博士,副教授,基金资助:
Zheng FAN1(),Panpan JI1,Chao LI2,Zhuang LIU3,Yigang ZHAO3,Xiaoyan JING1
Received:
2019-03-26
Revised:
2019-07-20
Online:
2019-11-05
Published:
2019-11-05
Contact:
Zheng FAN
摘要:
首先通过多因素方差分析探讨携水剂用量、反应温度、反应真空度、反应时间、酸醇比对丙烯酸苄酯质量分数及收率的影响,然后以显著因素为输入、综合得分为输出建立Takagi-Sugeno型模糊人工神经网络,最后利用遗传算法优化丙烯酸苄酯合成工艺条件并使用t检验法验证可靠性。研究表明,上述各因素对丙烯酸苄酯合成产物的质量分数与收率同时具有非常显著的影响,预测模型采用5-15-243-1型网络结构,经36859次训练其均方差小于允许收敛误差限0.0050,输出值与期望值呈近似线性关系,训练、测试阶段决定系数0.9999、0.9998。借助遗传算法经149次进化得到最优控制参数,即当携水剂用量为53 ml,反应温度为125℃,反应真空度为0.095 MPa,反应时间为2.2 h,酸醇比为1.4时,丙烯酸苄酯的质量分数、收率及综合得分为99.27%、98.04%、98.78%,经验证该模型亦可靠性良好。
中图分类号:
范峥, 姬盼盼, 李超, 刘壮, 赵毅刚, 井晓燕. 模糊神经网络-遗传算法优化丙烯酸苄酯合成工艺[J]. 化工学报, 2019, 70(11): 4315-4324.
Zheng FAN, Panpan JI, Chao LI, Zhuang LIU, Yigang ZHAO, Xiaoyan JING. Synthetic process optimization of benzyl acrylate using fuzzy neural networks-genetic algorithms[J]. CIESC Journal, 2019, 70(11): 4315-4324.
类别 | 名称 | 平方和 | 自由度 | 均方 | F | P | 显著性 |
---|---|---|---|---|---|---|---|
质量分数 | 携水剂用量 | 6.99×102 | 4 | 1.75×102 | 2.59×105 | 4.98×10-25 | ** |
反应温度 | 1.14×102 | 4 | 2.85×101 | 2.37×104 | 7.86×10-20 | ** | |
反应真空度 | 8.08 | 4 | 2.02 | 1.32×103 | 1.43×10-13 | ** | |
反应时间 | 7.04 | 4 | 1.76 | 1.29×103 | 1.60×10-13 | ** | |
酸醇比 | 1.41×102 | 4 | 3.54×101 | 2.48×104 | 6.26×10-20 | ** | |
收率 | 携水剂用量 | 3.95×102 | 4 | 9.88×101 | 8.77×104 | 1.13×10-22 | ** |
反应温度 | 4.40×102 | 4 | 1.10×102 | 1.90×105 | 2.38×10-24 | ** | |
反应真空度 | 4.96×101 | 4 | 1.24×101 | 1.33×104 | 1.42×10-18 | ** | |
反应时间 | 4.77×102 | 4 | 1.19×102 | 2.55×105 | 5.39×10-25 | ** | |
酸醇比 | 1.49×102 | 4 | 3.73×101 | 2.17×104 | 1.22×10-19 | ** |
表1 各因素对丙烯酸苄酯质量分数及收率的影响程度
Table 1 Influence significance of various factors on mass fraction yield of benzyl acrylate
类别 | 名称 | 平方和 | 自由度 | 均方 | F | P | 显著性 |
---|---|---|---|---|---|---|---|
质量分数 | 携水剂用量 | 6.99×102 | 4 | 1.75×102 | 2.59×105 | 4.98×10-25 | ** |
反应温度 | 1.14×102 | 4 | 2.85×101 | 2.37×104 | 7.86×10-20 | ** | |
反应真空度 | 8.08 | 4 | 2.02 | 1.32×103 | 1.43×10-13 | ** | |
反应时间 | 7.04 | 4 | 1.76 | 1.29×103 | 1.60×10-13 | ** | |
酸醇比 | 1.41×102 | 4 | 3.54×101 | 2.48×104 | 6.26×10-20 | ** | |
收率 | 携水剂用量 | 3.95×102 | 4 | 9.88×101 | 8.77×104 | 1.13×10-22 | ** |
反应温度 | 4.40×102 | 4 | 1.10×102 | 1.90×105 | 2.38×10-24 | ** | |
反应真空度 | 4.96×101 | 4 | 1.24×101 | 1.33×104 | 1.42×10-18 | ** | |
反应时间 | 4.77×102 | 4 | 1.19×102 | 2.55×105 | 5.39×10-25 | ** | |
酸醇比 | 1.49×102 | 4 | 3.73×101 | 2.17×104 | 1.22×10-19 | ** |
序号 | 携水剂用量/ml | 反应温度/℃ | 反应真空度/MPa | 反应时间/h | 酸醇比 | 质量分数/% | 收率/% | 综合得分/% |
---|---|---|---|---|---|---|---|---|
1 | 59 | 146 | 0.057 | 3.4 | 1.4 | 97.66 | 80.73 | 90.89 |
2 | 70 | 119 | 0.065 | 2.7 | 1.3 | 95.32 | 88.82 | 92.72 |
3 | 45 | 115 | 0.090 | 1.9 | 1.2 | 95.48 | 91.08 | 93.72 |
4 | 79 | 133 | 0.064 | 1.7 | 1.1 | 93.66 | 84.80 | 90.12 |
5 | 50 | 111 | 0.079 | 3.5 | 1.1 | 97.23 | 87.92 | 93.51 |
6 | 74 | 147 | 0.042 | 2.4 | 1.5 | 91.66 | 72.92 | 84.16 |
7 | 40 | 136 | 0.090 | 2.2 | 1.3 | 98.12 | 94.04 | 96.49 |
8 | 62 | 123 | 0.084 | 4.3 | 1.4 | 95.45 | 86.71 | 91.95 |
9 | 57 | 134 | 0.078 | 2.8 | 1.2 | 96.78 | 84.19 | 91.74 |
10 | 57 | 132 | 0.076 | 3.5 | 1.1 | 93.37 | 82.56 | 89.05 |
11 | 42 | 147 | 0.072 | 2.5 | 1.3 | 97.11 | 81.14 | 90.72 |
12 | 65 | 123 | 0.090 | 3.8 | 1.1 | 98.02 | 83.69 | 92.29 |
13 | 80 | 138 | 0.084 | 4.8 | 1.5 | 97.34 | 91.19 | 94.88 |
14 | 72 | 112 | 0.072 | 3.3 | 1.4 | 93.26 | 80.63 | 88.21 |
15 | 58 | 110 | 0.029 | 2.8 | 1.2 | 89.11 | 75.11 | 83.51 |
16 | 68 | 132 | 0.037 | 3.5 | 1.3 | 97.26 | 79.72 | 90.24 |
17 | 69 | 118 | 0.089 | 2.7 | 1.4 | 97.45 | 92.24 | 95.37 |
18 | 46 | 128 | 0.076 | 1.9 | 1.2 | 96.98 | 82.27 | 91.10 |
19 | 75 | 138 | 0.079 | 3.6 | 1.5 | 95.23 | 87.24 | 92.03 |
20 | 52 | 118 | 0.098 | 1.8 | 1.2 | 96.89 | 86.07 | 92.56 |
21 | 56 | 139 | 0.084 | 1.7 | 1.4 | 98.66 | 92.74 | 96.29 |
22 | 57 | 150 | 0.080 | 4.4 | 1.3 | 93.96 | 84.87 | 90.32 |
23 | 65 | 136 | 0.052 | 2.6 | 1.4 | 97.16 | 81.87 | 91.04 |
24 | 79 | 138 | 0.075 | 3.9 | 1.2 | 91.35 | 85.19 | 88.89 |
25 | 60 | 135 | 0.026 | 3.0 | 1.5 | 94.75 | 75.68 | 87.12 |
表2 丙烯酸苄酯的合成实验结果
Table 2 Synthesis experiment results of benzyl acrylate
序号 | 携水剂用量/ml | 反应温度/℃ | 反应真空度/MPa | 反应时间/h | 酸醇比 | 质量分数/% | 收率/% | 综合得分/% |
---|---|---|---|---|---|---|---|---|
1 | 59 | 146 | 0.057 | 3.4 | 1.4 | 97.66 | 80.73 | 90.89 |
2 | 70 | 119 | 0.065 | 2.7 | 1.3 | 95.32 | 88.82 | 92.72 |
3 | 45 | 115 | 0.090 | 1.9 | 1.2 | 95.48 | 91.08 | 93.72 |
4 | 79 | 133 | 0.064 | 1.7 | 1.1 | 93.66 | 84.80 | 90.12 |
5 | 50 | 111 | 0.079 | 3.5 | 1.1 | 97.23 | 87.92 | 93.51 |
6 | 74 | 147 | 0.042 | 2.4 | 1.5 | 91.66 | 72.92 | 84.16 |
7 | 40 | 136 | 0.090 | 2.2 | 1.3 | 98.12 | 94.04 | 96.49 |
8 | 62 | 123 | 0.084 | 4.3 | 1.4 | 95.45 | 86.71 | 91.95 |
9 | 57 | 134 | 0.078 | 2.8 | 1.2 | 96.78 | 84.19 | 91.74 |
10 | 57 | 132 | 0.076 | 3.5 | 1.1 | 93.37 | 82.56 | 89.05 |
11 | 42 | 147 | 0.072 | 2.5 | 1.3 | 97.11 | 81.14 | 90.72 |
12 | 65 | 123 | 0.090 | 3.8 | 1.1 | 98.02 | 83.69 | 92.29 |
13 | 80 | 138 | 0.084 | 4.8 | 1.5 | 97.34 | 91.19 | 94.88 |
14 | 72 | 112 | 0.072 | 3.3 | 1.4 | 93.26 | 80.63 | 88.21 |
15 | 58 | 110 | 0.029 | 2.8 | 1.2 | 89.11 | 75.11 | 83.51 |
16 | 68 | 132 | 0.037 | 3.5 | 1.3 | 97.26 | 79.72 | 90.24 |
17 | 69 | 118 | 0.089 | 2.7 | 1.4 | 97.45 | 92.24 | 95.37 |
18 | 46 | 128 | 0.076 | 1.9 | 1.2 | 96.98 | 82.27 | 91.10 |
19 | 75 | 138 | 0.079 | 3.6 | 1.5 | 95.23 | 87.24 | 92.03 |
20 | 52 | 118 | 0.098 | 1.8 | 1.2 | 96.89 | 86.07 | 92.56 |
21 | 56 | 139 | 0.084 | 1.7 | 1.4 | 98.66 | 92.74 | 96.29 |
22 | 57 | 150 | 0.080 | 4.4 | 1.3 | 93.96 | 84.87 | 90.32 |
23 | 65 | 136 | 0.052 | 2.6 | 1.4 | 97.16 | 81.87 | 91.04 |
24 | 79 | 138 | 0.075 | 3.9 | 1.2 | 91.35 | 85.19 | 88.89 |
25 | 60 | 135 | 0.026 | 3.0 | 1.5 | 94.75 | 75.68 | 87.12 |
名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c 1 | 0.2259 | p 2 | -0.0527 | p 33 | -0.5122 | p 64 | -0.1596 | p 95 | 1.1409 | p 126 | -0.1115 | p 157 | -0.5162 | p 188 | 1.2836 | p 219 | 0.1003 |
c 2 | 0.5168 | p 3 | -0.0908 | p 34 | -0.4500 | p 65 | -0.1353 | p 96 | -0.1498 | p 127 | 0.1729 | p 158 | 0.8730 | p 189 | 0.4636 | p 220 | -0.1195 |
c 3 | 0.4929 | p 4 | -0.1177 | p 35 | 0.4442 | p 66 | -0.5535 | p 97 | 0.8156 | p 128 | -0.0594 | p 159 | -0.4778 | p 190 | -0.3969 | p 221 | 0.2274 |
c 4 | 1.3197 | p 5 | 0.6785 | p 36 | -0.2946 | p 67 | -0.0955 | p 98 | 0.9121 | p 129 | -0.6127 | p 160 | -0.6394 | p 191 | -0.0356 | p 222 | 0.1785 |
c 5 | 0.5029 | p 6 | -0.2720 | p 37 | -0.2549 | p 68 | 0.8636 | p 99 | -0.3153 | p 130 | -0.1590 | p 161 | 0.7761 | p 192 | -0.5914 | p 223 | -0.3866 |
c 6 | 1.2901 | p 7 | 0.0901 | p 38 | -0.1485 | p 69 | 0.0738 | p 100 | 0.2442 | p 131 | 0.8443 | p 162 | -0.2095 | p 193 | 0.3368 | p 224 | 0.2579 |
c 7 | 0.2146 | p 8 | -0.0379 | p 39 | 0.1782 | p 70 | 0.3566 | p 101 | 0.2982 | p 132 | 0.2763 | p 163 | 0.2174 | p 194 | -0.2598 | p 225 | -0.6276 |
c 8 | 0.4910 | p 9 | 0.6482 | p 40 | 0.1982 | p 71 | 0.3833 | p 102 | -0.9759 | p 133 | -0.0961 | p 164 | -0.3348 | p 195 | 0.2569 | p 226 | -0.4762 |
c 9 | 0.5990 | p 10 | 0.6872 | p 41 | 0.7560 | p 72 | -0.1294 | p 103 | 0.7244 | p 134 | 1.2318 | p 165 | 0.1939 | p 196 | -0.2517 | p 227 | -0.2637 |
c 10 | 1.2804 | p 11 | 0.0389 | p 42 | 0.5785 | p 73 | -0.3799 | p 104 | 0.7644 | p 135 | -0.5737 | p 166 | 0.4461 | p 197 | -0.4040 | p 228 | -1.3678 |
c 11 | 0.5974 | p 12 | 0.2992 | p 43 | -0.0011 | p 74 | -0.1391 | p 105 | 0.2866 | p 136 | 0.0434 | p 167 | 0.3528 | p 198 | 0.0647 | p 229 | 0.1205 |
c 12 | 1.2885 | p 13 | 0.1585 | p 44 | 0.1848 | p 75 | 0.0511 | p 106 | 0.0780 | p 137 | -0.2631 | p 168 | -0.0294 | p 199 | 0.6088 | p 230 | 0.8660 |
c 13 | -0.0452 | p 14 | 0.3045 | p 45 | 0.2786 | p 76 | -0.0123 | p 107 | 0.6028 | p 138 | 0.1206 | p 169 | 0.4649 | p 200 | 0.1744 | p 231 | -0.5858 |
c 14 | 0.1176 | p 15 | 0.1817 | p 46 | 0.0162 | p 77 | 0.4850 | p 108 | -0.4093 | p 139 | -0.2049 | p 170 | 0.5313 | p 201 | -1.0546 | p 232 | -0.0026 |
c 15 | 0.6715 | p 16 | 0.7874 | p 47 | 0.2667 | p 78 | 0.3485 | p 109 | 0.1850 | p 140 | -0.6361 | p 171 | 0.3407 | p 202 | -0.1925 | p 233 | 0.3968 |
b 1 | 1.6756 | p 17 | 0.7167 | p 48 | -0.2921 | p 79 | 0.4046 | p 110 | -0.1969 | p 141 | -0.5779 | p 172 | -0.2310 | p 203 | 0.4416 | p 234 | -0.4005 |
b 2 | 0.7107 | p 18 | 0.3774 | p 49 | 0.1311 | p 80 | 0.3674 | p 111 | 0.0891 | p 142 | -0.0732 | p 173 | 0.2558 | p 204 | -0.5338 | p 235 | 0.4419 |
b 3 | 1.4756 | p 19 | 0.4844 | p 50 | 0.0428 | p 81 | -0.0012 | p 112 | -0.1133 | p 143 | -0.2882 | p 174 | -1.3755 | p 205 | 0.4870 | p 236 | -0.2004 |
b 4 | 0.1402 | p 20 | 0.5252 | p 51 | 0.3092 | p 82 | 0.0428 | p 113 | -0.1662 | p 144 | -0.1894 | p 175 | 0.7968 | p 206 | 0.8817 | p 237 | -1.3520 |
b 5 | 0.4454 | p 21 | 0.4219 | p 52 | 0.0874 | p 83 | -0.3125 | p 114 | 0.0033 | p 145 | -0.2522 | p 176 | 0.9980 | p 207 | 0.2650 | p 238 | -0.5211 |
b 6 | 0.4893 | p 22 | 0.3900 | p 53 | 0.3414 | p 84 | -0.0327 | p 115 | -0.3221 | p 146 | 0.1246 | p 177 | 0.0121 | p 208 | 0.3840 | p 239 | 0.4830 |
b 7 | 1.3439 | p 23 | 1.0331 | p 54 | 0.1562 | p 85 | -0.1944 | p 116 | 0.1378 | p 147 | -0.7386 | p 178 | 0.7413 | p 209 | 0.1739 | p 240 | -0.6456 |
b 8 | 0.5009 | p 24 | 0.5431 | p 55 | -0.1358 | p 86 | 0.4107 | p 117 | -0.0547 | p 148 | -0.1986 | p 179 | 1.0809 | p 210 | -1.1662 | p 241 | 0.0841 |
b 9 | 1.3363 | p 25 | 0.2942 | p 56 | 0.2668 | p 87 | 0.1059 | p 118 | -0.0470 | p 149 | 0.1560 | p 180 | 0.2495 | p 211 | -0.3584 | p 242 | 0.3447 |
b 10 | 0.0424 | p 26 | 0.3358 | p 57 | 0.1862 | p 88 | -0.1599 | p 119 | 0.0014 | p 150 | -0.2851 | p 181 | 0.2052 | p 212 | 0.3018 | p 243 | 0.2647 |
b 11 | 1.0759 | p 27 | 0.8773 | p 58 | 0.2708 | p 89 | 0.2754 | p 120 | -0.5424 | p 151 | 0.0479 | p 182 | -0.0720 | p 213 | -1.3114 | ||
b 12 | 0.6770 | p 28 | -0.3002 | p 59 | -0.1302 | p 90 | -0.1695 | p 121 | 0.3699 | p 152 | 0.4378 | p 183 | -0.7251 | p 214 | 0.2264 | ||
b 13 | 1.6471 | p 29 | -0.6332 | p 60 | -0.4174 | p 91 | -0.1764 | p 122 | 0.5743 | p 153 | -0.3308 | p 184 | 0.9004 | p 215 | 1.2090 | ||
b 14 | 0.6786 | p 30 | -0.7474 | p 61 | -0.3101 | p 92 | -0.1025 | p 123 | 0.3086 | p 154 | -0.2975 | p 185 | 0.9552 | p 216 | 0.1691 | ||
b 15 | 1.6390 | p 31 | -0.0086 | p 62 | -0.4942 | p 93 | -0.4327 | p 124 | 0.6027 | p 155 | -0.0178 | p 186 | -0.3782 | p 217 | -0.0976 | ||
p 1 | 0.1006 | p 32 | 0.3977 | p 63 | -0.0777 | p 94 | 0.2365 | p 125 | 0.8182 | p 156 | -0.6699 | p 187 | 0.9241 | p 218 | -0.4751 |
表3 预测模型主要相关参数
Table 3 List of primary related parameters for prediction model
名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 | 名称 | 数值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c 1 | 0.2259 | p 2 | -0.0527 | p 33 | -0.5122 | p 64 | -0.1596 | p 95 | 1.1409 | p 126 | -0.1115 | p 157 | -0.5162 | p 188 | 1.2836 | p 219 | 0.1003 |
c 2 | 0.5168 | p 3 | -0.0908 | p 34 | -0.4500 | p 65 | -0.1353 | p 96 | -0.1498 | p 127 | 0.1729 | p 158 | 0.8730 | p 189 | 0.4636 | p 220 | -0.1195 |
c 3 | 0.4929 | p 4 | -0.1177 | p 35 | 0.4442 | p 66 | -0.5535 | p 97 | 0.8156 | p 128 | -0.0594 | p 159 | -0.4778 | p 190 | -0.3969 | p 221 | 0.2274 |
c 4 | 1.3197 | p 5 | 0.6785 | p 36 | -0.2946 | p 67 | -0.0955 | p 98 | 0.9121 | p 129 | -0.6127 | p 160 | -0.6394 | p 191 | -0.0356 | p 222 | 0.1785 |
c 5 | 0.5029 | p 6 | -0.2720 | p 37 | -0.2549 | p 68 | 0.8636 | p 99 | -0.3153 | p 130 | -0.1590 | p 161 | 0.7761 | p 192 | -0.5914 | p 223 | -0.3866 |
c 6 | 1.2901 | p 7 | 0.0901 | p 38 | -0.1485 | p 69 | 0.0738 | p 100 | 0.2442 | p 131 | 0.8443 | p 162 | -0.2095 | p 193 | 0.3368 | p 224 | 0.2579 |
c 7 | 0.2146 | p 8 | -0.0379 | p 39 | 0.1782 | p 70 | 0.3566 | p 101 | 0.2982 | p 132 | 0.2763 | p 163 | 0.2174 | p 194 | -0.2598 | p 225 | -0.6276 |
c 8 | 0.4910 | p 9 | 0.6482 | p 40 | 0.1982 | p 71 | 0.3833 | p 102 | -0.9759 | p 133 | -0.0961 | p 164 | -0.3348 | p 195 | 0.2569 | p 226 | -0.4762 |
c 9 | 0.5990 | p 10 | 0.6872 | p 41 | 0.7560 | p 72 | -0.1294 | p 103 | 0.7244 | p 134 | 1.2318 | p 165 | 0.1939 | p 196 | -0.2517 | p 227 | -0.2637 |
c 10 | 1.2804 | p 11 | 0.0389 | p 42 | 0.5785 | p 73 | -0.3799 | p 104 | 0.7644 | p 135 | -0.5737 | p 166 | 0.4461 | p 197 | -0.4040 | p 228 | -1.3678 |
c 11 | 0.5974 | p 12 | 0.2992 | p 43 | -0.0011 | p 74 | -0.1391 | p 105 | 0.2866 | p 136 | 0.0434 | p 167 | 0.3528 | p 198 | 0.0647 | p 229 | 0.1205 |
c 12 | 1.2885 | p 13 | 0.1585 | p 44 | 0.1848 | p 75 | 0.0511 | p 106 | 0.0780 | p 137 | -0.2631 | p 168 | -0.0294 | p 199 | 0.6088 | p 230 | 0.8660 |
c 13 | -0.0452 | p 14 | 0.3045 | p 45 | 0.2786 | p 76 | -0.0123 | p 107 | 0.6028 | p 138 | 0.1206 | p 169 | 0.4649 | p 200 | 0.1744 | p 231 | -0.5858 |
c 14 | 0.1176 | p 15 | 0.1817 | p 46 | 0.0162 | p 77 | 0.4850 | p 108 | -0.4093 | p 139 | -0.2049 | p 170 | 0.5313 | p 201 | -1.0546 | p 232 | -0.0026 |
c 15 | 0.6715 | p 16 | 0.7874 | p 47 | 0.2667 | p 78 | 0.3485 | p 109 | 0.1850 | p 140 | -0.6361 | p 171 | 0.3407 | p 202 | -0.1925 | p 233 | 0.3968 |
b 1 | 1.6756 | p 17 | 0.7167 | p 48 | -0.2921 | p 79 | 0.4046 | p 110 | -0.1969 | p 141 | -0.5779 | p 172 | -0.2310 | p 203 | 0.4416 | p 234 | -0.4005 |
b 2 | 0.7107 | p 18 | 0.3774 | p 49 | 0.1311 | p 80 | 0.3674 | p 111 | 0.0891 | p 142 | -0.0732 | p 173 | 0.2558 | p 204 | -0.5338 | p 235 | 0.4419 |
b 3 | 1.4756 | p 19 | 0.4844 | p 50 | 0.0428 | p 81 | -0.0012 | p 112 | -0.1133 | p 143 | -0.2882 | p 174 | -1.3755 | p 205 | 0.4870 | p 236 | -0.2004 |
b 4 | 0.1402 | p 20 | 0.5252 | p 51 | 0.3092 | p 82 | 0.0428 | p 113 | -0.1662 | p 144 | -0.1894 | p 175 | 0.7968 | p 206 | 0.8817 | p 237 | -1.3520 |
b 5 | 0.4454 | p 21 | 0.4219 | p 52 | 0.0874 | p 83 | -0.3125 | p 114 | 0.0033 | p 145 | -0.2522 | p 176 | 0.9980 | p 207 | 0.2650 | p 238 | -0.5211 |
b 6 | 0.4893 | p 22 | 0.3900 | p 53 | 0.3414 | p 84 | -0.0327 | p 115 | -0.3221 | p 146 | 0.1246 | p 177 | 0.0121 | p 208 | 0.3840 | p 239 | 0.4830 |
b 7 | 1.3439 | p 23 | 1.0331 | p 54 | 0.1562 | p 85 | -0.1944 | p 116 | 0.1378 | p 147 | -0.7386 | p 178 | 0.7413 | p 209 | 0.1739 | p 240 | -0.6456 |
b 8 | 0.5009 | p 24 | 0.5431 | p 55 | -0.1358 | p 86 | 0.4107 | p 117 | -0.0547 | p 148 | -0.1986 | p 179 | 1.0809 | p 210 | -1.1662 | p 241 | 0.0841 |
b 9 | 1.3363 | p 25 | 0.2942 | p 56 | 0.2668 | p 87 | 0.1059 | p 118 | -0.0470 | p 149 | 0.1560 | p 180 | 0.2495 | p 211 | -0.3584 | p 242 | 0.3447 |
b 10 | 0.0424 | p 26 | 0.3358 | p 57 | 0.1862 | p 88 | -0.1599 | p 119 | 0.0014 | p 150 | -0.2851 | p 181 | 0.2052 | p 212 | 0.3018 | p 243 | 0.2647 |
b 11 | 1.0759 | p 27 | 0.8773 | p 58 | 0.2708 | p 89 | 0.2754 | p 120 | -0.5424 | p 151 | 0.0479 | p 182 | -0.0720 | p 213 | -1.3114 | ||
b 12 | 0.6770 | p 28 | -0.3002 | p 59 | -0.1302 | p 90 | -0.1695 | p 121 | 0.3699 | p 152 | 0.4378 | p 183 | -0.7251 | p 214 | 0.2264 | ||
b 13 | 1.6471 | p 29 | -0.6332 | p 60 | -0.4174 | p 91 | -0.1764 | p 122 | 0.5743 | p 153 | -0.3308 | p 184 | 0.9004 | p 215 | 1.2090 | ||
b 14 | 0.6786 | p 30 | -0.7474 | p 61 | -0.3101 | p 92 | -0.1025 | p 123 | 0.3086 | p 154 | -0.2975 | p 185 | 0.9552 | p 216 | 0.1691 | ||
b 15 | 1.6390 | p 31 | -0.0086 | p 62 | -0.4942 | p 93 | -0.4327 | p 124 | 0.6027 | p 155 | -0.0178 | p 186 | -0.3782 | p 217 | -0.0976 | ||
p 1 | 0.1006 | p 32 | 0.3977 | p 63 | -0.0777 | p 94 | 0.2365 | p 125 | 0.8182 | p 156 | -0.6699 | p 187 | 0.9241 | p 218 | -0.4751 |
序号 | 质量分数/% | 收率/% | 综合得分/% | 自由度 | 样本标准偏差 | t | P |
---|---|---|---|---|---|---|---|
1 | 99.20 | 98.08 | 98.75 | 4 | 0.0180 | -1.65 | 0.09 |
2 | 99.25 | 98.06 | 98.77 | ||||
3 | 99.24 | 98.04 | 98.76 | ||||
4 | 99.28 | 98.06 | 98.79 | ||||
5 | 99.26 | 97.98 | 98.75 |
表4 丙烯酸苄酯合成工艺优化条件验证
Table 4 Optimal conditions validation of benzyl acrylate synthesis
序号 | 质量分数/% | 收率/% | 综合得分/% | 自由度 | 样本标准偏差 | t | P |
---|---|---|---|---|---|---|---|
1 | 99.20 | 98.08 | 98.75 | 4 | 0.0180 | -1.65 | 0.09 |
2 | 99.25 | 98.06 | 98.77 | ||||
3 | 99.24 | 98.04 | 98.76 | ||||
4 | 99.28 | 98.06 | 98.79 | ||||
5 | 99.26 | 97.98 | 98.75 |
1 | 任强, 黄春燕, 周琳楠, 等 . 高固体分涂料用含羟基星形丙烯酸酯树脂的制备及性能[J]. 化工学报, 2015, 66(6): 2336-2342. |
Ren Q , Huang C Y , Zhou L N , et al . Preparation and properties of hydroxyl functionalized star acrylic resin for high solid coating[J]. CIESC Journal, 2015, 66(6): 2336-2342. | |
2 | Popiel S , Nawała J , Czupryński K . Preparation and application of sol-gel acrylate and methacrylate solid-phase microextraction fibres for gas chromatographic analysis of organoarsenic compounds[J]. Analytica Chimica Acta, 2014, 837(5): 52-63. |
3 | 郭晓宇, 杨莉, 梁宏斌, 等 . 国内丙烯酸行业产品工业化生产技术分析[J]. 现代化工, 2011, 31(8): 6-8. |
Guo X Y , Yang L , Liang H B , et al . Analysis on industrial production technique of acrylic acid in China[J]. Modern Chemical Industry, 2011, 31(8): 6-8. | |
4 | 潘朝群, 张进 . 丙烯酸酯液体光学胶的制备与性能[J]. 精细化工, 2015, 32(2): 195-200. |
Pan C Q , Zhang J . Study on the synthesis of liquid optical acrylic adhesive and its properties[J]. Fine Chemicals, 2015, 32(2): 195-200. | |
5 | 唐二军, 姚蒙蒙, 郭晓峰, 等 . 水性环氧丙烯酸酯乳液涂层成膜性能[J]. 化工学报, 2018, 69(S1): 143-147. |
Tang E J , Yao M M , Guo X F , et al . Film formation for aqueous epoxy acrylate latex coatings[J]. CIESC Journal, 2018, 69(S1): 143-147. | |
6 | Ghosh P , Yeasmin S . Performance evaluation of polymeric blend of vinyl acetate and acrylate-based copolymers in lubricating oil[J]. Petroleum Science and Technology, 2019, 37(7): 845-852. |
7 | 侯有军 . 特种丙烯酸酯单体的研究进展[J]. 涂料工业, 2011, 41(3): 75-80. |
Hou Y J . The progress in development of special acrylate monomers[J]. Paint & Coatings Industry, 2011, 41(3): 75-80. | |
8 | Yuan Y , Siegmann A , Narkis M . Synthesis, structure, and properties of poly(styrene-co-pentabromobenzylacrylate) materials[J]. Journal of Applied Polymer Science, 2010, 60(9): 1475-1481. |
9 | Giang H N , Kinashi K , Sakai W , et al . Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzyl acrylate)-based composite[J]. Polymer Journal, 2013, 46(1): 59-66. |
10 | Worzakowska M . Thermal behavior, decomposition mechanism and some physicochemical properties of starch-g-poly(benzyl acrylate) copolymers[J]. Journal of Thermal Analysis & Calorimetry, 2016, 126(2): 531-540. |
11 | Oberti T G , Schiavoni M M , Cortizo M S . Structure and properties of poly(benzyl acrylate) synthesized under microwave energy[J]. Radiation Physics & Chemistry, 2008, 77(5): 597-604. |
12 | Cortizo M C , Oberti T G , Cortizo M S , et al . Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion[J]. Journal of Dentistry, 2012, 40(4): 329-337. |
13 | 赵立红, 闫捷, 魏灵朝, 等 . 以醋酸为原料合成丙烯酸(酯)的研究进展[J]. 现代化工, 2015, 35(6): 44-47+49. |
Zhao L H , Yan J , Wei L C , et al . Advances in synthesis of acrylic acid(ester) from acetic acid[J]. Modern Chemical Industry, 2015, 35(6): 44-47+49. | |
14 | 李学坤, 李稳宏, 常远, 等 . 氨基磺酸催化合成丙烯酸苄酯工艺优化及动力学研究[J]. 西北大学学报(自然科学版), 2015, 45(3): 429-434. |
Li X K , Li W H , Chang Y , et al . Process optimization and reaction kinetics study of benzyl acrylate catalyzed by sulfamic acid[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(3): 429-434. | |
15 | 潘柳依, 淡勇, 王军峰, 等 . S O 4 2 - /TiO2-SnO2固体酸催化剂的制备及其催化合成丙烯酸苄酯[J]. 化工进展, 2018, 37(5): 1823-1830. |
Pan L Y , Dan Y , Wang J F , et al . Preparation of S O 4 2 - /TiO2-SnO2 solid acid catalyst and its catalytic activity in synthesis of benzyl acrylate[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1823-1830. | |
16 | 郭海军, 胡星琪, 张耀文, 等 . 神经网络用于无磷洗涤助剂合成条件的预测与优化[J]. 精细化工, 2003, 20(12): 734-737+765. |
Guo H J , Hu X Q , Zhang Y W , et al . Prediction and optimization of technological conditions for synthesis of phosphorus-free builder by neural network method[J]. Fine Chemicals, 2003, 20(12): 734-737+765. | |
17 | Bouzeria H , Ghenim A N , Khanchoul K . Using artificial neural network(ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria[J]. Journal of Water & Land Development, 2017, 33(4): 47-55. |
18 | Manohar B , Divakar S . An artificial neural network analysis of porcine pancreas lipase catalyzed esterification of athranilic acid with methanol[J]. Process Biochemistry, 2005, 40(10): 3372-3376. |
19 | 范峥, 付文耀, 赵笑男, 等 . 基于小波神经网络预测多相动态管道腐蚀速率[J]. 化工进展, 2018, 37(8): 2904-2911. |
Fan Z , Fu W Y , Zhao X N , et al . Prediction of tubular corrosion rate under multiphase dynamics condition based on wavelet neural network[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2904-2911. | |
20 | Yazdani S , Hadavandi E , Hower J , et al . A novel nature-inspired optimization based neural network simulator to predict coal grindability index[J]. Engineering Computations, 2018, 35(2): 1003-1048. |
21 | 任保增, 雒廷亮, 李晨, 等 . 用人工神经网络研究对氯苯氧乙酸钾的合成工艺[J]. 精细化工, 2003, 20(6): 329-332. |
Ren B Z , Luo T L , Li C , et al . Study of synthesis process of potassium p-chlorophenoxyacetate by artificial neural networks[J]. Fine Chemicals, 2003, 20(6): 329-332. | |
22 | Savala R , Dey P , Gupta N . Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid[J]. Diagnostic Cytopathology, 2018, 46(3): 244-249. |
23 | Lashkarbolook M , Hezave A Z , Bayat M . Correlating thermal conductivity of pure hydrocarbons and aromatics via perceptron artificial neural network(PANN) method[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 547-554. |
24 | Islam M P , Morimoto T . Non-linear autoregressive neural network approach for inside air temperature prediction of a pillar cooler[J]. International Journal of Green Energy, 2017, 14(2): 141-149. |
25 | Mosleh M , Otadi M . Simulation and evaluation of system of fuzzy linear Fredholm integro-differential equations with fuzzy neural network[J]. Neural Computing & Applications, 2017, 24(5): 1-11. |
26 | Ko C N , Lee C M . Image recognition using adaptive fuzzy neural network based on lifting scheme of wavelet[J]. Artificial Life & Robotics, 2015, 20(4): 353-358. |
27 | Oh S K , Park B J , Kim H K . Genetically optimized hybrid fuzzy neural networks based on linear fuzzy inference rules[J]. International Journal of Control Automation & Systems, 2005, 3(2): 183-194. |
28 | 范峥, 刘钊, 井晓燕, 等 . 利用量子化学特征的模糊人工神经网络预测咪唑啉衍生物缓蚀效率[J]. 化工进展, 2019, 38(4): 1961-1969. |
Fan Z , Liu Z Y , Jing X Y , et al . Prediction of corrosion inhibition efficiency of imidazoline derivatives using fuzzy artificial neural network based on quantum chemical characteristics[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1961-1969. | |
29 | Huynh T T , Le T L , Lin C M . Self-organizing recurrent wavelet fuzzy neural network-based control system design for MIMO uncertain nonlinear systems using TOPSIS method[J]. International Journal of Fuzzy Systems, 2019, 21(2): 468-487. |
30 | Li Y , Zhang B H , Xu X . Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling[J]. Transactions of the Canadian Society for Mechanical Engineering, 2018, 42(3): 286-297. |
31 | Qiao J , Cai J , Han H G , et al . Predicting PM2.5 concentrations at a regional background station using second order self-organizing fuzzy neural network[J]. Atmosphere, 2017, 8(12): 1-17. |
32 | 董早鹏, 刘涛, 万磊, 等 . 基于Takagi-Sugeno模糊神经网络的欠驱动无人艇直线航迹跟踪控制[J]. 仪器仪表学报, 2015, 36(4): 863-870. |
Dong Z P , Liu T , Wan L , et al . Straight-path tracking control of underactuated USV based on Takagi-Sugeno fuzzy neural network[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 863-870. | |
33 | 马晓丹, 刘刚, 周薇, 等 . 基于量子遗传模糊神经网络的苹果果实识别[J]. 农业机械学报, 2013, 44(12): 227-232+251. |
Ma X D , Liu G , Zhou W , et al . Apple recognition based on fuzzy neural network and quantum genetic algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 227-232+251. | |
34 | 关海鸥, 许少华, 谭峰 . 基于遗传模糊神经网络的植物病斑区域图像分割模型[J]. 农业机械学报, 2010, 41(11): 163-167. |
Guan H O , Xu S H , Tan F . Image segmentation model of plant lesion based on genetic algorithm and fuzzy neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 163-167. | |
35 | Man K F , Tang K S , Kwong S . Genetic algorithms: concepts and applications in engineering design[J]. IEEE Transactions on Industrial Electronics, 1996, 43(5): 519-534. |
36 | Pilski M , Seredyński F . An energy efficient routing algorithm based on genetic algorithm for Ad Hoc networks[J]. Annales Umcs Informatica, 2008, 8(1): 31-41. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[8] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[12] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[13] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||