化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4216-4230.DOI: 10.11949/0438-1157.20190481
收稿日期:
2019-05-08
修回日期:
2019-06-17
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
李洪伟
作者简介:
李洪伟(1982—),男,博士,副教授,基金资助:
Hongwei LI(),Guobao WEI,Yacheng WANG,Dongwei FU
Received:
2019-05-08
Revised:
2019-06-17
Online:
2019-11-05
Published:
2019-11-05
Contact:
Hongwei LI
摘要:
小通道填充泡沫金属成为近几年强化换热方向的研究热点。以空气和水为工作介质,将PPI为10和20的泡沫金属分别填充到截面为2.5 mm×2.5 mm的T型小通道内,改变泡沫金属的亲疏水性,分别研究弹状流和环状流下气液两相表观流速及亲疏水性对相分离的影响机制。比较亲水、疏水处理及未处理这三种泡沫金属的分离特性发现:无论是弹状流还是环状流,分离效果最好的是亲水处理后的泡沫金属,其次是未经处理的泡沫金属,而进行疏水处理后的分离效果最差,填充泡沫金属的T型通道相分离效果要明显好于未填充的通道。对于亲疏水处理过的T型通道,无论是弹状流还是环状流,T型小通道内侧支管气相采出分率占优,液相采出分率随着液体表观速度的增加而降低,但气相表观速度对液相采出分率影响很小。而泡沫金属PPI的减小会降低气相采出分率,使分配效果更加趋近于均匀分布线。
中图分类号:
李洪伟, 魏国宝, 王亚成, 付东威. 泡沫金属亲疏水性对T型小通道气液两相流相分离特性影响研究[J]. 化工学报, 2019, 70(11): 4216-4230.
Hongwei LI, Guobao WEI, Yacheng WANG, Dongwei FU. Investigation on effect of hydrophilicity and hydrophobicity of metal foam on phase separation characteristics of gas-liquid two-phase flow in T-junction[J]. CIESC Journal, 2019, 70(11): 4216-4230.
仪器名称 | 仪器型号 | 参数 |
---|---|---|
微型水泵 | NP039 | 入口真空度为-0.85×105 Pa,进出口压差为20×105 Pa,工作转速为100~4000 r/min,耐温-40~150℃ |
微型气泵 | HC1.30DC | 电压24 V,气液通用,最大真空38 kPa,压头 >15 m |
电子天平 | FA2004A | 测量范围0~200 g,精度0.1 mg |
气体质量流量计 | MF 4008 | 最大流量50 SLPM,精度±(1.5+0.2FS),显示分辨率0.01SLPM,响应时间10 ms |
高速摄像机 | Photron FASTCAM Mini UX100 | 分辨率1280×1024, 最大帧频4000 帧/秒 |
表1 仪器参数
Table 1 Instrument parameter
仪器名称 | 仪器型号 | 参数 |
---|---|---|
微型水泵 | NP039 | 入口真空度为-0.85×105 Pa,进出口压差为20×105 Pa,工作转速为100~4000 r/min,耐温-40~150℃ |
微型气泵 | HC1.30DC | 电压24 V,气液通用,最大真空38 kPa,压头 >15 m |
电子天平 | FA2004A | 测量范围0~200 g,精度0.1 mg |
气体质量流量计 | MF 4008 | 最大流量50 SLPM,精度±(1.5+0.2FS),显示分辨率0.01SLPM,响应时间10 ms |
高速摄像机 | Photron FASTCAM Mini UX100 | 分辨率1280×1024, 最大帧频4000 帧/秒 |
1 | ZhuY, HuH, SunS, et al. Flow boiling of refrigerant in horizontal metal-foam filled tubes(Ⅰ): Two-phase flow pattern visualization[J]. International Journal of Heat & Mass Transfer, 2015, 91: 446-453. |
2 | ZhuY, HuH, SunS, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38(38): 215-226. |
3 | ZhuY, HuH, DingG, et al. Influence of metal foam on heat transfer characteristics of refrigerant-oil mixture flow boiling inside circular tubes[J]. Applied Thermal Engineering, 2013, 50(1): 1246-1256. |
4 | HuH, ZhuY, PengH, et al. Influence of tube diameter on heat transfer characteristics of refrigerant-oil mixture flow boiling in metal-foam filled tubes[J]. International Journal of Refrigeration, 2014, 41(5): 121-136. |
5 | MakC Y, Omebere-IyariN K, AzzopardiB J. The split of vertical two-phase flow at a small diameter T-junction[J]. Chemical Engineering Science, 2006, 61(19): 6261-6272. |
6 | YangL M, AzzopardiB J. Phase split of liquid-liquid two-phase flow at a horizontal T-junction[J]. International Journal of Multiphase Flow, 2007, 33(2): 207-216. |
7 | AzzopardiB J. Measurements and observations of the split of annular flow at a vertical T-junction[J]. International Journal of Multiphase Flow, 1988, 14(6): 701-710. |
8 | DasG, DasP K, AzzopardiB J. The split of stratified gas-liquid flow at a small diameter T-junction[J]. International Journal of Multiphase Flow, 2005, 31: 514-528. |
9 | GorpVan, SolimanC A, SimsH M. The effect of pressure on two-phase flow dividing at a reduced tee junction[J]. International Journal of Multiphase Flow, 2001, 27(3): 571-576. |
10 | HeK, WangS F, HuangJ Z. The effect of flow pattern on split of two-phase flow through a micro-T-junction[J]. Heat Mass Transfer, 2011, 54: 3587-3593. |
11 | HeK, WangS F, HuangJ Z. The effect of surface tension on phase distribution of two-phase flow in a micro-T-junction[J]. Chemical Engineering Science, 2011, 66: 3962-3968. |
12 | LiH W, LiJ W, ZhouY L, et al. Phase split characteristics of slug and annular flow in a dividing micro-T-junction[J]. Experimental Thermal and Fluid Science, 2017, 80: 244-258. |
13 | AzziA, Al-AttiyahA, QiL, et al. Gas-liquid two-phase flow division at a micro-T-junction [J]. Chemical Engineering Science, 2010, 65(13): 3986-3993. |
14 | IssaR I, OliveiraP J. Numerical prediction of phase separation in two-phase flow through T-junctions[J]. Computers & Fluids, 1994, 23(2): 347-372. |
15 | HearyV S, SotiropoulosF. Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section[J]. Computers & Fluids, 1996, 25(2): 95-118. |
16 | AdechyD, IssaR I. Modelling of annular flow through pipes and T-junctions[J]. Computers & Fluids, 2004, 33(2): 289-313. |
17 | 梁法春, 王栋, 林宗虎. 新型三通分配器中环状流相分离预测[J]. 工程热物理学报, 2007, 28(1): 71-73. |
LiangF C, WangD, LinZ H. Prediction of annular flow phase separation in a new T-junction type distributor[J]. Journal of Engineering Thermophysics, 2007, 28(1): 71-73. | |
18 | 钱勇, 徐济鋆. 气液两相流水平管系结点处影响区相分离模型分析[J]. 核科学与工程, 1997, 17(4): 293-301. |
QianY, XuJ J. Phase separation model analysis of gas-liquid two-phase flow in the zones of influence in horizontal pipeline system[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(4): 293-301. | |
19 | QianD, LawalA. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 23(4): 7609-7625. |
20 | 周云龙, 刘博, 刘袖, 等. T型微通道内两相流流型及相分离特性[J]. 化学反应工程与工艺, 2012, (4): 300-305. |
ZhouY L, LiuB, LiuX, et al. Flow patterns and phase splitting of two-phase flow in a micro-T-junction[J]. Chemical Reaction Engineering and Technology, 2012, (4): 300-305. | |
21 | KawajiM, KojiM. Effects of inlet geometry on gas-liquid two-phase flow in microchannels[C]//ASME Spring National Meeting, Conference Proceedings. 2005: 2411-2419. |
22 | TriplettK A, GhiaasiaanS M, Abdel-KhalikS I, et al. Gas-liquid two-phase flow in microchannels (Ⅰ): Two-phase flow patterns[J]. Multiphase Flow, 1999, 25: 377-394. |
23 | TaitelY, DuklerA E. A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow[J]. ASME Journal, 1976, 22: 47-55. |
24 | SeegerW, ReimannJ, MullerU. Two-phase flow in a T-junction with a horizontal inlet: phase separation [J]. International Journal of Multiphase Flow, 1986, 12(4): 575-585. |
25 | TaeS J, ChoK. Two-phase split of refrigerants at a T-junction[J]. International Journal of Refrigeration, 2006, 29(7): 1128-1137. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[3] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[4] | 周宇航, 陈建义, 王亚安, 张丁于, 马红莹, 叶松. 基于液膜流型的双入口管柱式气液分离器性能研究[J]. 化工学报, 2022, 73(3): 1221-1231. |
[5] | 张井志, 赵玉婷, 王英迪, 齐建荟, 雷丽. 正弦型微通道内液-液两相流型及流动特性实验研究[J]. 化工学报, 2022, 73(3): 1111-1118. |
[6] | 杨蕊, 朱宝锦, 吕超, 张磊, 肖迎松. 脉动条件下旋流场内气液两相流流型及其转变机理[J]. 化工学报, 2022, 73(10): 4389-4398. |
[7] | 湛伟, 刘西洋, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
[8] | 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
[9] | 朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092. |
[10] | 田永生, 季万祥, 陈增桥, 王乃华. 大长径比垂直换热管外瞬态池沸腾的研究[J]. 化工学报, 2021, 72(4): 2018-2026. |
[11] | 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122. |
[12] | 徐肖肖, 张世杰, 李怡, 刘朝. 制冷剂在微通道扁平T型管内的气液两相流相分配特性研究[J]. 化工学报, 2021, 72(4): 2057-2064. |
[13] | 杨振, 姚元鹏, 吴慧英. 基于导热形状因子的泡沫金属导热特性分析[J]. 化工学报, 2021, 72(3): 1295-1301. |
[14] | 郝仁杰, 谯敏, 黄卫星. 气-液并流通过堆叠筛板填料的脉冲流特性[J]. 化工学报, 2021, 72(3): 1314-1321. |
[15] | 徐祥贵, 王丽琼, 王君雷, 王燕, 黄巧, 黄云. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||