化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2113-2122.DOI: 10.11949/0438-1157.20201079
收稿日期:
2020-07-31
修回日期:
2020-12-09
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
胡大鹏
作者简介:
朱明军(1988—),男,博士研究生,基金资助:
Received:
2020-07-31
Revised:
2020-12-09
Online:
2021-04-05
Published:
2021-04-05
Contact:
HU Dapeng
摘要:
首先提出了用于油水砂分离的三相螺旋沉降式离心机两种结构模型。通过CFD数值计算发现,带有轴向管法兰的三相卧螺离心机结构模型存在一定的缺陷,即管法兰上有堵砂的情况出现且分离效率较低。通过改进设计,可调溢流挡板的三相卧螺离心机结构模型是可取的。该模型有较高的油相回收率,且固相也相对较干燥,适用于油水固三相分离。该模型还具有水与油砂分离、油水与砂分离或油与水砂分离等几种不同的排液方式。对此三相卧螺离心机加工制造,搭建实验平台,通过实验研究发现,此种结构的三相卧螺离心机对油相的分离效率较高,挡板圆弧中心到转鼓中心轴的距离对分离效率有着不同的影响。
中图分类号:
朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
ZHU Mingjun, HU Dapeng. Design analysis of three-phase decanter centrifuge and influence research of structural parameters on separation effect[J]. CIESC Journal, 2021, 72(4): 2113-2122.
图5 改进式三相卧螺离心机网格划分[(a),(b)]及网格质量检查[(c)~(f)]
Fig.5 Three-dimensional model meshing [(a),(b)] and grid quality check [(c)—(f)] of the improved three-phase horizontal screw centrifuge
1 | Mellon N, Shariff A M. Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure[J]. Journal of Natural Gas Chemistry, 2011, 20(6): 565-567. |
2 | Seleznev V. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators[J]. Journal of Zhejiang University-SCIENCE A, 2007, 8(5): 755-765. |
3 | Møller H B, Sommer S G, Ahring B K. Separation efficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2): 189-196. |
4 | Huang J, Treeratpituk P, Taylor S M, et al. Enhancing cross document coreference of web documents with context similarity and very large scale text categorization[C]//COLING '10: Proceedings of the 23rd International Conference on Computational Linguistics. 2010: 483-491. |
5 | 窦茂卫, 苏保卫, 高学理, 等. 油田采出水膜法处理技术应用研究进展[J]. 环境科学与技术, 2011, 34(8): 124-130. |
Dou M W, Su B W, Gao X L, et al. Progress in membrane technology for treatment of oilfield produced water[J]. Environmental Science & Technology, 2011, 34(8): 124-130. | |
6 | 张逢玉, 姜安玺, 吕阳. 油田采出水处理技术与发展趋势研究[J]. 环境科学与管理, 2007, 32(10): 65-68, 80. |
Zhang F Y, Jiang A X, Lyu Y. Treatment techniques of oilfield wastewater and development[J]. Environmental Science and Management, 2007, 32(10): 65-68, 80. | |
7 | 张珂, 朱建华, 周勇, 等. 含油污泥的废油置换脱水特性[J]. 化工学报, 2013, 64(9): 3396-3403. |
Zhang K, Zhu J H, Zhou Y, et al. Fry-drying of oily sludge via spent lubricating oil of vehicle[J]. CIESC Journal, 2013, 64(9): 3396-3403. | |
8 | Zhang H X, Zhai L S, Liu R Y, et al. Prediction of curved oil-water interface in horizontal pipes using modified model with dynamic contact angle[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 698-711. |
9 | Zhu G R, Tan W, Yu Y, et al. Experimental and numerical study of the solid concentration distribution in a horizontal screw decanter centrifuge[J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17249-17256. |
10 | Gong H F, Yu B, Zhang X M, et al. Structural optimization of a demulsification and dewatering device coupled with swirl centrifugal and high-voltage fields by response surface methodology combined with numerical simulation[J]. Chemical Engineering Research and Design, 2019, 148: 361-374. |
11 | Leung W W F. Inferring in situ floc size, predicting solids recovery, and scaling-up using the Leung number in separating flocculated suspension in decanter centrifuges[J]. Separation and Purification Technology, 2016, 171: 69-79. |
12 | Lisboa P F, Fernandes J, Simões P C, et al. Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2010, 55(1): 107-115. |
13 | Safa R, Soltani Goharrizi A. CFD simulation of an industrial hydrocyclone with Eulerian-Eulerian approach: a case study[J]. International Journal of Mining Science and Technology, 2014, 24(5): 643-648. |
14 | Bednarski S, Listewnik J. Separation of Liquid-Liquid Solids Mixtures in a Hydrocyclone-Coalescer System[M]. Springer, 1992. |
15 | Guerrini L, Masella P, Angeloni G, et al. Changes in olive paste composition during decanter feeding and effects on oil yield[J]. European Journal of Lipid Science and Technology, 2017, 119(12): 1700223. |
16 | He F Q, Wang H L, Tan Y H, et al. Predictive modeling of the performance of the hydrocyclone with different cone combination[J]. Applied Mechanics and Materials, 2012, 190/191: 147-150. |
17 | Leung W. Separation of dispersed suspension in rotating test tube[J]. Separation and Purification Technology, 2004, 38(2): 99-119. |
18 | Maddahian R, Asadi M, Farhanieh B. Numerical investigation of the velocity field and separation efficiency of deoiling hydrocyclones[J]. Petroleum Science, 2012, 9(4): 511-520. |
19 | 王永虎, 黄建龙, 王玉娟. 螺旋输送器的结构建模与数值模拟分析[J]. 兰州理工大学学报, 2005, 31(5): 39-42. |
Wang Y H, Huang J L, Wang Y J. Structural modeling for screw conveyers and analysis of their numerical simulation[J]. Journal of Lanzhou University of Technology, 2005, 31(5): 39-42. | |
20 | 毛文贵. 离心机螺旋-转鼓组虚拟样机建模及仿真研究[D].长沙: 长沙理工大学, 2006. |
Mao W G. Research on modeling and simulation of virtual prototype of centrifuge screw-drum set [D]. Changsha: Changsha University of Science and Technology, 2006. | |
21 | 朱桂华, 任继良, 张玉柱, 等. 污泥脱水卧螺离心机最优差转速[J]. 机械设计与研究, 2012, 28(2): 109-112. |
Zhu G H, Ren J L, Zhang Y Z, et al. Optimization of the differential rotational speed in separator for the sludge dewatering[J]. Machine Design & Research, 2012, 28(2): 109-112. | |
22 | 郑胜飞, 任欣, 谢林君. 卧螺离心机流场的三维数值模拟[J]. 轻工机械, 2009, 27(6): 26-29. |
Zheng S F, Ren X, Xie L J. Three-dimensional numerical simulation of spiral centrifuge flow field[J]. Light Industry Machinery, 2009, 27(6): 26-29. | |
23 | 于萍, 林苇, 王晓彬, 等. 卧螺离心机离心分离场速度仿真分析[J]. 机械工程学报, 2011, 47(24): 151-157. |
Yu P, Lin W, Wang X B, et al. Velocity simulation analysis on centrifugal separation field of horizontal spiral centrifuge[J]. Journal of Mechanical Engineering, 2011, 47(24): 151-157. | |
24 | 钟伟良, 谭蔚, 李振威, 等. 基于流固耦合的大型卧螺离心机数值模拟及实验研究[J]. 化学工业与工程, 2018, 35(2): 62-69. |
Zhong W L, Tan W, Li Z W, et al. Numerical simulation and vibration test analysis of large-scale decanter centrifuge base on fluid-structure interaction[J]. Chemical Industry and Engineering, 2018, 35(2): 62-69. | |
25 | 袁惠新. 螺旋卸料式碟片离心机: 101648168A [P]. 2010-02-17. |
Yuan H X. Spiral discharge disc centrifuge: 101648168A [P]. 2010-02-17. | |
26 | Ohinata T. Decanter type centrifugal separator with restriction effected discharge: US6780148[P]. 2004-08-24. |
27 | 姜杰, 温冬, 肖泽仪. 三相卧螺离心机油水分离的CFD分析[J]. 流体机械, 2017, 45(6): 26-31. |
Jiang J, Wen D, Xiao Z Y. CFD analysis for three-phase decanter centrifuge for oily wastewater separation[J]. Fluid Machinery, 2017, 45(6): 26-31. | |
28 | Leone A, Romaniello R, Zagaria R, et al. Mathematical modelling of the performance parameters of a new decanter centrifuge generation[J]. Journal of Food Engineering, 2015, 166: 10-20. |
29 | 程华农, 刘群山, 王炳强, 等. 聚碳酸酯液液分离器的流体力学模拟和中试试验[J]. 化工学报, 2013, 64(6): 2109-2116. |
Cheng H N, Liu Q S, Wang B Q, et al. Fluid dynamics simulation and pilot test for polycarbonate liquid-liquid separator[J]. CIESC Journal, 2013, 64(6): 2109-2116. | |
30 | 李强. 三相离心机在餐厨垃圾分离行业中的应用[J]. 过滤与分离, 2017, 27(3): 34-36, 48. |
Li Q. Application of three phase centrifuge in kitchen waste separation industry[J]. Journal of Filtration & Separation, 2017, 27(3): 34-36, 48. | |
31 | Wang L Y, Zheng Z C, Wu Y X, et al. Numerical and experimental study on liquid-solid flow in a hydrocyclone[J]. Journal of Hydrodynamics, Ser. B, 2009, 21(3): 408-414. |
32 | Liu M L, Chen J Q, Cai X L, et al. Oil-water pre-separation with a novel axial hydrocyclone[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 60-66. |
33 | 徐保蕊, 蒋明虎, 赵立新, 等. 螺旋分离器水流动特性的CFD模拟与PIV试验[J]. 石油学报, 2018, 39(2): 223-231. |
Xu B R, Jiang M H, Zhao L X, et al. CFD simulation and PIV test of water flow characteristics in helix separator[J]. Acta Petrolei Sinica, 2018, 39(2): 223-231. | |
34 | 孙启才, 金鼎五. 离心机原理结构与设计计算[M]. 北京: 机械工业出版社, 1987. |
Sun Q C, Jin D W. Centrifuge Principle Structure and Design Calculation [M]. Beijing: Machinery Industry Press, 1987. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[14] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 698
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 821
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||