1 |
韩福生. 超轻开孔泡沫铝及其在航天领域的应用[J]. 航天器环境工程, 2013, 30(6): 570-575.
|
|
Han F S. Ultra-light open celled aluminum foam and its applications in aerospace field [J]. Spacecraft Environment Engineering, 2013, 30(6): 570-575.
|
2 |
Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells [J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632.
|
3 |
赵亮, 田沣, 张丰华, 等. 开孔泡沫金属散热性能试验研究[J]. 航空计算技术, 2018, 48(5): 211-213, 217.
|
|
Zhao L, Tian F, Zhang F H, et al. Experiment study on heat dissipation performance of open foam metal [J]. Aeronautical Computing Technique, 2018, 48(5): 211-213, 217.
|
4 |
赵亮, 田沣, 杨明明, 等. 机载电子设备泡沫金属换热器研究[J]. 机械研究与应用, 2016, 29(1): 48-49, 53.
|
|
Zhao L, Tian F, Yang M M, et al. Research on foam metal heat exchanger of airborne electronic equipment [J]. Mechanical Research & Application, 2016, 29(1): 48-49, 53.
|
5 |
谢智勇. 高流速下泡沫金属内流动及传热特性的数值研究[D]. 大连: 大连理工大学, 2019.
|
|
Xie Z Y. Numerical investigation on flow and heat transfer performance in metal foams at high flow rate [D]. Dalian: Dalian University of Technology, 2019.
|
6 |
Wong S W, Chon W Y. Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling [J]. AIChE Journal, 1969, 15(2): 281-288.
|
7 |
Xu Z G, Zhao C Y. Experimental study on pool boiling heat transfer in gradient metal foams [J]. International Journal of Heat and Mass Transfer, 2015, 85: 824-829.
|
8 |
Zhang B J, Kim K J, Yoon H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling [J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498.
|
9 |
杨卧龙, 纪献兵, 徐进良. 从自然到仿生到实际应用的超亲水表面[J]. 化学进展, 2016, 28(6): 763-772.
|
|
Yang W L, Ji X B, Xu J L. Superhydrophilic surfaces: from nature to biomimetics to application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
|
10 |
马学虎, 宋天一, 兰忠, 等. 固液界面能差效应与冷凝传热强化研究进展[J]. 化工学报, 2006, 57(8): 1763-1775.
|
|
Ma X H, Song T Y, Lan Z, et al. Advances in liquid-solid-interfacial-energy-difference effect and condensation heat transfer enhancement [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8): 1763-1775.
|
11 |
勾昱君, 刘中良, 王皆腾, 等. 自然对流条件下仿生超疏水表面的抑霜研究[J]. 工程热物理学报, 2007, 28(4): 631-633.
|
|
Gou Y J, Liu Z L, Wang J T, et al. Frost formation on a bionic super-hydrophobic surface under natural convection conditions [J]. Journal of Engineering Thermophysics, 2007, 28(4): 631-633.
|
12 |
胡晨昱, 赖展程, 胡海涛, 等. 疏水改性对泡沫金属表面池沸腾换热特性的影响[J]. 制冷技术, 2018, 38(6): 8-11.
|
|
Hu C Y, Lai Z C, Hu H T, et al. Effect of hydrophobic modification on pool boiling heat transfer characteristics on metal foam covered surface [J]. Chinese Journal of Refrigeration Technology, 2018, 38(6): 8-11.
|
13 |
马强, 吴晓敏, 朱毅. 表面润湿性对核态池沸腾影响的试验研究[J]. 工程热物理学报, 2019, 40(3): 635-638.
|
|
Ma Q, Wu X M, Zhu Y. Experimental investigation of the effect of surface wettability on nucleate pool boiling [J]. Journal of Engineering Thermophysics, 2019, 40(3): 635-638.
|
14 |
Li Q, Kang Q J, Francois M M, et al. Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability [J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796.
|
15 |
Jo H, Kim S, Park H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate [J]. International Journal of Multiphase Flow, 2014, 62: 101-109.
|
16 |
周儒鸿, 纪献兵, 孔庆盼, 等. 表面润湿性影响池沸腾传热的研究进展[J]. 热能动力工程, 2019, 34(2): 1-8.
|
|
Zhou R H, Ji X B, Kong Q P, et al. Research progress of pool boiling heat transferon different wettability surfaces [J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 1-8.
|
17 |
陈粤, 刘俊威, 莫冬传, 等. 超疏水纳米结构表面池沸腾特性[J]. 工程热物理学报, 2011, 32(4): 634-636.
|
|
Chen Y, Liu J W, Mo D C, et al. Pool boiling performance of superhydrophobic nanostructured interface [J]. Journal of Engineering Thermophysics, 2011, 32(4): 634-636.
|
18 |
宋永吉, 任晓光, 蒋英杰, 等. 纳米结构超疏水表面的沸腾传热[J]. 化工进展, 2006, 25(z1): 298-301.
|
|
Song Y J, Ren X G, Jiang Y J, et al. Pool boiling heat transfer characteristics of a novel nanostructured super hydrophobic surface [J]. Chemical Industry and Engineering Progress, 2006, 25(z1): 298-301.
|
19 |
赵鹏飞, 冀文涛, 赵二涛, 等. 不同润湿性表面池沸腾换热特性研究[J]. 中国科技论文, 2018, 13(11): 1211-1216.
|
|
Zhao P F, Ji W T, Zhao E T, et al. Study on the pool boiling heat transfer of surfaces with different wettability [J]. China Sciencepaper, 2018, 13(11): 1211-1216.
|
20 |
徐鹏飞, 李强, 宣益民. 超亲水多孔表面制备及其池沸腾换热研究[J]. 工程热物理学报, 2014, 35(8): 1606-1609.
|
|
Xu P F, Li Q, Xuan Y M. Preparation and pool boiling heat transfer test of super-hydrophilic surface [J]. Journal of Engineering Thermophysics, 2014, 35(8): 1606-1609.
|
21 |
Li W, Chen Z C, Li J Y, et al. Subcooled flow boiling on hydrophilic and super-hydrophilic surfaces in microchannel under different orientations [J]. International Journal of Heat and Mass Transfer, 2019, 129: 635-649.
|
22 |
Zhou K, Coyle C, Li J Y, et al. Flow boiling in vertical narrow microchannels of different surface wettability characteristics [J]. International Journal of Heat and Mass Transfer, 2017, 109: 103-114.
|
23 |
Hsieh S S, Lin C Y. Subcooled convective boiling in structured surface microchannels [J]. Journal of Micromechanics and Microengineering, 2010, 20(1): 015027.
|
24 |
Wang G D, Cheng P, Bergles A E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2267-2281.
|
25 |
Liu T Y, Li P L, Liu C W, et al. Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface [J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 126-134.
|
26 |
Choi C, Shin J S, Yu D I, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels [J]. Experimental Thermal and Fluid Science, 2011, 35(5): 816-824.
|
27 |
Choi C, Huh C, Kim D, et al. Wettability effect on flow boiling in an MEMS-based single glass microchannel [C]// Proceedings of ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany, 2009: 635-642.
|
28 |
Hu H T, Zhao Y X, Lai Z C, et al. Experimental investigation on nucleate pool boiling heat transfer characteristics on hydrophobic metal foam covers [J]. Applied Thermal Engineering, 2020, 179: 115730.
|
29 |
Shi J, Jia X, Feng D Y, et al. Wettability effect on pool boiling heat transfer using a multiscale copper foam surface [J]. International Journal of Heat and Mass Transfer, 2020, 146: 118726.
|
30 |
Moffat R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
|