化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4081-4092.DOI: 10.11949/0438-1157.20201737
收稿日期:
2020-12-03
修回日期:
2021-01-22
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
许雄文
作者简介:
朱业铭(1996—),男,硕士研究生,基金资助:
Yeming ZHU1(),Jinping LIU1,2,Xiongwen XU1,2(),Dandan ZHU1
Received:
2020-12-03
Revised:
2021-01-22
Online:
2021-08-05
Published:
2021-08-05
Contact:
Xiongwen XU
摘要:
孔结构被广泛应用于传质塔填料中,对填料上的液膜流动和传质行为影响较大。对竖直光板和多孔板上的液膜流动进行了三维模拟,并通过实验验证了模拟的准确性。通过模拟研究了孔结构对液膜流动特性的影响。结果表明,干燥孔会阻碍液膜的铺展,而润湿孔促进液膜的铺展。与光板相比,多孔板上的液膜具有起伏波,这将影响液膜的厚度分布和速度分布。液膜厚度波动和水平方向的速度波动随着孔径的增加而增加,而竖直流动方向的速度随着孔径的增加而降低。当孔径增加到一定值时,毛细波将出现在孔中的液膜中,这大大增加液膜水平方向上的波动速度,而降低流动方向上的速度。当孔径继续增加到临界值时,液膜将破裂。多孔板上孔内和气侧区域存在涡旋,能够促进内部液体交换和增大气侧扰动,从而增强传质能力。
中图分类号:
朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092.
Yeming ZHU, Jinping LIU, Xiongwen XU, Dandan ZHU. Research on liquid film flow characteristics of vertical porous plate[J]. CIESC Journal, 2021, 72(8): 4081-4092.
Zone name | Boundary conditions |
---|---|
inlet | velocity-inlet(UDF, Nusselt velocity distribution) |
outlet | pressure-outlet (0 Pa) |
top | symmetry |
plate | no-slip wall with contact angle |
side | no-slip wall with contact angle |
hole | symmetry |
表1 模型边界条件
Table 1 Model boundary conditions
Zone name | Boundary conditions |
---|---|
inlet | velocity-inlet(UDF, Nusselt velocity distribution) |
outlet | pressure-outlet (0 Pa) |
top | symmetry |
plate | no-slip wall with contact angle |
side | no-slip wall with contact angle |
hole | symmetry |
光板 | H=0.25 mm) 多孔板,(D=1 mm,S=1 mm, | ||||
---|---|---|---|---|---|
网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 | 网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 |
5.2 | 0.1 | 0.35 | 43 | 0.0029 | 0.082 |
11.8 | 0.022 | 0.16 | 91 | 0.0013 | 0.058 |
22.5 | 0.016 | 0.12 | 143 | 0.0004 | 0.056 |
55.7 | 0.0065 | 0.065 | 200 | 0.0004 | 0.04 |
表2 光板和多孔板模型的网格尺寸
Table 2 Mesh size of nonporous and porous plates
光板 | H=0.25 mm) 多孔板,(D=1 mm,S=1 mm, | ||||
---|---|---|---|---|---|
网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 | 网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 |
5.2 | 0.1 | 0.35 | 43 | 0.0029 | 0.082 |
11.8 | 0.022 | 0.16 | 91 | 0.0013 | 0.058 |
22.5 | 0.016 | 0.12 | 143 | 0.0004 | 0.056 |
55.7 | 0.0065 | 0.065 | 200 | 0.0004 | 0.04 |
1 | Sebastia-Saez D, Gu S, Ranganathan P, et al. 3D modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements[J]. International Journal of Greenhouse Gas Control, 2013, 19: 492-502. |
2 | Sun B, He L, Liu B T, et al. A new multi-scale model based on CFD and macroscopic calculation for corrugated structured packing column[J]. AIChE Journal, 2013, 59(8): 3119-3130. |
3 | Chen J B, Liu C J, Yuan X G, et al. CFD simulation of flow and mass transfer in structured packing distillation columns[J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 381-388. |
4 | Isoz M, Haidl J. Computational-fluid-dynamics analysis of gas flow through corrugated-sheet-structured packing: effects of packing geometry[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11785-11796. |
5 | Amini Y, Karimi-Sabet J, Nasr Esfahany M. Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 35-43. |
6 | Raynal L, Ben Rayana F, Royon-Lebeaud A. Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale[J]. Energy Procedia, 2009, 1(1): 917-924. |
7 | 许媛媛. 多相液膜流动的计算流体力学建模与验证[D]. 上海: 上海交通大学, 2010. |
Xu Y Y. Computational fluid dynamics modeling and validation toportray the liquid flow behavior for multiphase[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
8 | 吴思其. 规整填料片上气液两相流动及传质特性研究[D]. 杭州: 浙江大学, 2017. |
Wu S Q. Research on gas-liquid film flow characteristics and mass transfer characteristics of corrugation packing surface[D]. Hangzhou: Zhejiang University, 2017. | |
9 | Nosoko T, Yoshimura P N, Nagata T, et al. Characteristics of two-dimensional waves on a falling liquid film[J]. Chemical Engineering Science, 1996, 51(5): 725-732. |
10 | Milan M, Borhani N, Thome J R. Adiabatic vertical downward air-water flow pattern map: influence of inlet device, flow development length and hysteresis effects[J]. International Journal of Multiphase Flow, 2013, 56: 126-137. |
11 | Hoffmann A, Ausner I, Repke J U, et al. Fluid dynamics in multiphase distillation processes in packed towers[J]. Computer Aided Chemical Engineering, 2004, 18: 199-204. |
12 | Singh R K, Galvin J E, Sun X. Three-dimensional simulation of rivulet and film flows over an inclined plate: effects of solvent properties and contact angle[J]. Chemical Engineering Science, 2016, 142: 244-257. |
13 | Singh R K, Galvin J E, Whyatt G A, et al. Breakup of a liquid rivulet falling over an inclined plate: identification of a critical Weber number[J]. Physics of Fluids, 2017, 29(5): 052101. |
14 | Iso Y, Chen X. Flow transition behavior of the wetting flow between the film flow and rivulet flow on an inclined wall[J]. Journal of Fluids Engineering, 2011, 133(9): 091101. |
15 | Trifonov Y Y. Counter-current gas-liquid flow between vertical corrugated plates[J]. Chemical Engineering Science, 2011, 66(20): 4851-4866. |
16 | Tong Z Y, Hong W R, Marek A, et al. Effect of triangular corrugations on dynamic characteristics of film flow[J]. Procedia Engineering, 2012, 42: 540-554. |
17 | Tong Z Y, Marek A, Hong W R, et al. Experimental and numerical investigation on gravity-driven film flow over triangular corrugations[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15946-15958. |
18 | Li J, Guo Y Q, Tong Z Y, et al. Comparative study on the characteristics of film flow with different corrugation plates[J]. Microgravity Science and Technology, 2015, 27(3): 171-179. |
19 | Sebastia-Saez D, Gu S, Ranganathan P, et al. Micro-scale CFD modeling of reactive mass transfer in falling liquid films within structured packing materials[J]. International Journal of Greenhouse Gas Control, 2015, 33: 40-50. |
20 | Xu Y Y, Yuan J Q, Repke J U, et al. CFD study on liquid flow behavior on inclined flat plate focusing on effect of flow rate[J]. Engineering Applications of Computational Fluid Mechanics, 2012, 6(2): 186-194. |
21 | Xu Y Y, Zhao M, Paschke S, et al. Detailed investigations of the countercurrent multiphase (gas-liquid and gas-liquid-liquid) flow behavior by three-dimensional computational fluid dynamics simulations[J]. Industrial & Engineering Chemistry Research, 2014, 53(18): 7797-7809. |
22 | Zhu M, Liu C J, Zhang W W, et al. Transport phenomena of falling liquid film flow on a plate with rectangular holes[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11724-11731. |
23 | Liu B T, Wen Y T, Liu C J, et al. Multiscale calculation on perforated sheet structured packing to predict the liquid distribution based on computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7810-7818. |
24 | Subramanian K, Wozny G. Analysis of hydrodynamics of fluid flow on corrugated sheets of packing[J]. International Journal of Chemical Engineering, 2012, 2012: 1-13. |
25 | Kolev N, Kralev B, Kolev D. Gas side controlled mass transfer in a new packing with stamped horizontal lamellae operating at extremely low liquid loads[J]. Chemical Engineering and Processing: Process Intensification, 2013, 63: 44-49. |
26 | Fair J R, Seibert A F, Behrens M, et al. Structured packing PerformanceExperimental evaluation of two predictive models[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1788-1796. |
27 | Hu J G, Liu J T, Yu J G, et al. CO2 absorption into highly concentrated DEA solution flowing over a vertical plate with rectangular windows[J]. International Journal of Greenhouse Gas Control, 2013, 19: 13-18. |
28 | 胡剑光, 刘佳特, 袁猛, 等. 新型垂直板规整填料流体力学及传质性能[J]. 化工学报, 2014, 65(1): 116-122. |
Hu J G, Liu J T, Yuan M, et al. Hydrodynamics and mass transfer characteristics of a novel vertical-sheet structured packing[J]. CIESC Journal, 2014, 65(1): 116-122. | |
29 | Hu J G, Yang X G, Yu J G, et al. Numerical investigation on hydrodynamics of vertically confined free film[J]. The Canadian Journal of Chemical Engineering, 2016, 94(2): 340-348. |
30 | Hu J G, Yang X G, Yu J G, et al. Carbon dioxide (CO2) absorption and interfacial mass transfer across vertically confined free liquid film-a numerical investigation[J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 46-56. |
31 | Maiti R N, Arora R, Khanna R, et al. The liquid spreading on porous solids: Dual action of pores[J]. Chemical Engineering Science, 2005, 60(22): 6235-6239. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[3] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[4] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[5] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[6] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[7] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[8] | 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951. |
[9] | 张井志, 赵玉婷, 王英迪, 齐建荟, 雷丽. 正弦型微通道内液-液两相流型及流动特性实验研究[J]. 化工学报, 2022, 73(3): 1111-1118. |
[10] | 周宇航, 陈建义, 王亚安, 张丁于, 马红莹, 叶松. 基于液膜流型的双入口管柱式气液分离器性能研究[J]. 化工学报, 2022, 73(3): 1221-1231. |
[11] | 杨蕊, 朱宝锦, 吕超, 张磊, 肖迎松. 脉动条件下旋流场内气液两相流流型及其转变机理[J]. 化工学报, 2022, 73(10): 4389-4398. |
[12] | 湛伟, 刘西洋, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
[13] | 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341. |
[14] | 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
[15] | 田永生, 季万祥, 陈增桥, 王乃华. 大长径比垂直换热管外瞬态池沸腾的研究[J]. 化工学报, 2021, 72(4): 2018-2026. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||