化工学报 ›› 2020, Vol. 71 ›› Issue (1): 344-353.DOI: 10.11949/0438-1157.20191265
收稿日期:
2019-10-24
修回日期:
2019-11-07
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
王琦
作者简介:
张博(1993—),男,博士研究生,基金资助:
Bo ZHANG(),Yiran HE,Yingchun LIU,Qi WANG()
Received:
2019-10-24
Revised:
2019-11-07
Online:
2020-01-05
Published:
2020-01-05
Contact:
Qi WANG
摘要:
G-四链体是核酸的一种非经典二级结构,主要出现于富含鸟嘌呤(G)碱基的DNA或RNA序列。生物体内的G-四链体主要形成于端粒区域和某些原癌基因的启动子区域,是生物医学研究的重要对象。以G-四链体作为靶点的抗癌策略虽被多次提出,但目前还未有成功进入临床试验的案例。因此,有关原癌基因启动子区域的G-四链体与配体结合的研究,可以对靶向抗癌药物的设计提供指导性建议。使用分子动力学模拟的方法,研究了不同的异喹啉类生物碱与G-四链体的结合机理。通过考察四种异喹啉配体与G-四链体结合的过程,得到了异喹啉配体与G-四链体稳定结合的构象以及结合的主导因素。此工作从原子分子层面深化了对异喹啉类生物碱和G-四链体结合机理的微观认识,对抗癌药物设计具有指导意义。
中图分类号:
张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
Bo ZHANG, Yiran HE, Yingchun LIU, Qi WANG. Molecular dynamics study of binding of isoquinoline alkaloids to G-quadruplex[J]. CIESC Journal, 2020, 71(1): 344-353.
常用名 | 英文名 | 缩写 | 分子式 |
---|---|---|---|
血根碱[ | Sanguinarine | SAU | C20H14NO4+ |
二氢血根碱[ | Dihydrosanguinarine | DHS | C20H15NO4 |
南天宁碱[ | Nantenine | NAT | C20H21NO4 |
白屈菜碱[ | Chelidonine | CHL | C20H19NO5 |
表1 本工作选取的四种异喹啉类生物碱
Table 1 Four isoquinoline alkaloids selected in this work
常用名 | 英文名 | 缩写 | 分子式 |
---|---|---|---|
血根碱[ | Sanguinarine | SAU | C20H14NO4+ |
二氢血根碱[ | Dihydrosanguinarine | DHS | C20H15NO4 |
南天宁碱[ | Nantenine | NAT | C20H21NO4 |
白屈菜碱[ | Chelidonine | CHL | C20H19NO5 |
1 | Simonsson T. G-Quadruplex DNA structures — variations on a theme[J]. Biological Chemistry, 2001, 382(4): 621-628. |
2 | Brooks T A, Hurley L H. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics[J]. Nature Reviews Cancer, 2009, 9(12): 849-861. |
3 | Mathad R I, Hatzakis E, Dai J, et al. c-MYC promoter G-quadruplex formed at the 5'-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability[J]. Nucleic Acids Research, 2011, 39(20): 9023-9033. |
4 | Dang C V. MYC on the path to cancer[J]. Cell, 2012, 149(1): 22-35. |
5 | Wahlstrom T, Henriksson M. Impact of MYC in regulation of tumor cell metabolism[J]. Biochimica et Biophysica Acta, 2015, 1849(5): 563-569. |
6 | 汤慧敏, 李玉峰. C-myc在慢性髓系白血病中的作用机制研究进展[J].中国实验血液学杂志, 2019, 27(1): 297-300. |
Tang H M, Li Y F. Research progress of C-myc in chronic myelogenous leukemia[J]. J. Exp. Hematol., 2019, 27(1): 297-300. | |
7 | 杜清, 杨巧红, 张新江, 等. C-myc在胃癌治疗方面的研究进展[J].转化医学电子杂志, 2018, 5(9): 53-58. |
Du Q, Yang Q H, Zhang X J, et al. Research progress of C-myc in the treatment of gastric cancer[J].E-Journal of Translational Medicine, 2018, 5(9): 53-58. | |
8 | 吴飞翔, 曹骥, 赵荫农, 等. B-myb C-myc在肝细胞性肝癌中的表达及临床意义[J].中国肿瘤临床, 2008, (5): 269-271+276. |
Wu F X, Cao J, Zhao Y N, et al. Expression of B-myb and C-myc in hepatocellular carcinoma and its clinical significance[J]. Chin. J. Clin. Oncol., 2008, (5): 269-271+276. | |
9 | 宋春丽, 呼君瑜, 李美艳, 等. FHIT、C-myc在宫颈癌中的表达及其与高危型HPV感染的相关性[J].中国肿瘤, 2016, 25(5): 395-399. |
Song C L, Hu J Y, Li M Y, et al. Expression of FHIT and C-myc in cervical cancer and its correlation with high-risk HPV infection[J]. China Cancer, 2016, 25(5): 395-399. | |
10 | Xiong Y, Huang Z, Tan J, et al. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives[J]. European Journal of Medicinal Chemistry, 2015, 97: 538-551. |
11 | Ma Y, Ou T, Hou J, et al. 9-N-Substituted berberine derivatives: stabilization of G-quadruplex DNA and down-regulation of oncogene C-myc[J]. Bioorganic & Medicinal Chemistry, 2008, 16(16): 7582-7591. |
12 | Shen H, Zhang B, Xu H, et al. Microfluidic-based G-quadruplex ligand displacement assay for alkaloid anticancer drug screening[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134: 333-339. |
13 | Luo D, Mu Y. All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T[J]. Journal of Physical Chemistry B, 2015, 119(15): 4955-4967. |
14 | Verma S, Ghuge S A, Ravichandiran V, et al. Spectroscopic studies of thioflavin-T binding to c-Myc G-quadruplex DNA[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 212: 388-395. |
15 | Li Q, Xiang J, Li X, et al. Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves[J]. Biochimie, 2009, 91(7): 811-819. |
16 | Li J, Jin X, Hu L, et al. Identification of nonplanar small molecule for G-quadruplex grooves: molecular docking and molecular dynamic study[J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(23): 6969-6972. |
17 | Huang S, Liang Y, Cui J, et al. Comparative investigation of binding interactions with three steroidal derivatives of d(GGGT)4 G-quadruplex aptamer[J]. Steroids, 2018, 132: 46-55. |
18 | Bessi I, Bazzicalupi C, Richter C, et al. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA[J]. ACS Chemical Biology, 2012, 7(6): 1109-1119. |
19 | Psotova J, Klejdus B, Vecera R, et al. A liquid chromatographic-mass spectrometric evidence of dihydrosanguinarine as a first metabolite of sanguinarine transformation in rat[J]. Journal of Chromatography B, 2006, 830(1): 165-172. |
20 | Indra B, Matsunaga K, Hoshino O, et al. Structure–activity relationship studies with (±)-nantenine derivatives for α1-adrenoceptor antagonist activity[J]. European Journal of Pharmacology, 2002, 437(3): 173-178. |
21 |
Ribar B, Kapor A, Mezsaros C, et al. Crystal and molecular structure of chelidonine[J]. ChemInform, 1991, 22(37). doi: 10.1002/chin.199137262.
DOI |
22 | Ambrus A, Chen D, Dai J, et al. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization[J]. Biochemistry, 2005, 44(6): 2048-2058. |
23 | Frisch M J. Gaussian 09: Revision A.02[CP]. Wallingford, CT: Gaussian, Inc., 2016. |
24 | Ivani I, Dans P D, Noy A, et al. PARMBSC1: a refined force-field for DNA simulations[J]. Nature Methods, 2016, 13(1): 55-58. |
25 | Wang J, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9): 1157-1174. |
26 | Pronk S, Pall S, Schulz R, et al. Gromacs 4.5[J]. Bioinformatics, 2013, 29(7): 845-854. |
27 | Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics, 1984, 81(1): 511-519. |
28 | Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697. |
29 | Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. |
30 | Hirschfelder J O, Curtiss C F, Bird R B, et al. Molecular Theory of Gases and Liquids[M]. New York: Wiley, 1954. |
31 | Darden T, York D M, Pedersen L G, et al. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12): 10089-10092. |
32 | Kakali B, Gopinatha S K. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study[J]. Biochimica et Biophysica Acta, 2011, 1810: 485-496. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[6] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[7] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[8] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[9] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[10] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[11] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[12] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[13] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[14] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[15] | 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||