化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3333-3344.DOI: 10.11949/0438-1157.20191524
收稿日期:
2019-12-16
修回日期:
2020-04-07
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
范开峰
作者简介:
李思(1988—),女,博士,讲师,基金资助:
Si LI1,2(),Kaifeng FAN1(
),Qiyu HUANG3
Received:
2019-12-16
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Kaifeng FAN
摘要:
析蜡温度是重要的石油流体性质参数,得到准确的析蜡温度是保证含蜡原油管道安全输送的前提。提出了近红外光谱温度扫描测试法和折射率测试法,改进了近红外光谱波长扫描测试法,并从可靠性、灵敏性和稳定性等方面与常用的偏光显微镜法和差示扫描量热法进行比较。结果表明,近红外光谱法和折射率法可以得到可靠的测试结果,并具有较高的灵敏性和稳定性;实验操作和数据分析方法简单,测试结果不易受到制样过程影响,尤其适合挥发性较强的油样。此外,近红外光谱法测试时油样处于运动状态,可有效减小过冷度的影响,但与实际管输条件仍存在一定差别。
中图分类号:
李思, 范开峰, 黄启玉. 利用NIRS和RI技术测试石油流体析蜡温度新方法[J]. 化工学报, 2020, 71(7): 3333-3344.
Si LI, Kaifeng FAN, Qiyu HUANG. New measurement methods for wax appearance temperature of petroleum fluids using NIRS and RI techniques[J]. CIESC Journal, 2020, 71(7): 3333-3344.
凝点/ ℃ | 含蜡量/ %(质量) | 沥青质/ %(质量) | 胶质/ %(质量) | 20℃时密度/ (kg·m-3) | 40℃时黏度/ (mPa·s) |
---|---|---|---|---|---|
33 | 21.42 | 0.21 | 9.00 | 857.0 | 28.40 |
表1 DJ原油基本物性
Table 1 Basic properties of DJ crude oil
凝点/ ℃ | 含蜡量/ %(质量) | 沥青质/ %(质量) | 胶质/ %(质量) | 20℃时密度/ (kg·m-3) | 40℃时黏度/ (mPa·s) |
---|---|---|---|---|---|
33 | 21.42 | 0.21 | 9.00 | 857.0 | 28.40 |
波长/nm | 吸光度基线值 | 析蜡温度/℃ |
---|---|---|
600 | 0.0293 | 20.88 |
800 | 0.0113 | 20.82 |
1000 | 0.0194 | 20.79 |
1300 | 0.0474 | 20.78 |
1600 | 0.0825 | 20.77 |
表2 不同波长对应的析蜡温度测试结果
Table 2 WAT results fitted at different wavelengths
波长/nm | 吸光度基线值 | 析蜡温度/℃ |
---|---|---|
600 | 0.0293 | 20.88 |
800 | 0.0113 | 20.82 |
1000 | 0.0194 | 20.79 |
1300 | 0.0474 | 20.78 |
1600 | 0.0825 | 20.77 |
沥青质含量0% | 沥青质含量2.0% | 沥青质含量5.0% | |||
---|---|---|---|---|---|
波长/nm | WAT/℃ | 波长/nm | WAT/℃ | 波长/nm | WAT/℃ |
600 | 21.13 | 1300 | 20.26 | 1000 | 20.23 |
700 | 21.12 | 1400 | 20.23 | 1050 | 20.07 |
800 | 21.11 | 1500 | 20.21 | 1100 | 19.94 |
900 | 21.10 | 1550 | 20.19 | 1150 | 19.82 |
1000 | 21.09 | 1600 | 20.18 | 1200 | 19.72 |
表3 沥青质含量不同的含蜡模拟油在不同波长下的析蜡温度
Table 3 WAT determined by different wave lengths of model oil samples with different asphaltenes contents
沥青质含量0% | 沥青质含量2.0% | 沥青质含量5.0% | |||
---|---|---|---|---|---|
波长/nm | WAT/℃ | 波长/nm | WAT/℃ | 波长/nm | WAT/℃ |
600 | 21.13 | 1300 | 20.26 | 1000 | 20.23 |
700 | 21.12 | 1400 | 20.23 | 1050 | 20.07 |
800 | 21.11 | 1500 | 20.21 | 1100 | 19.94 |
900 | 21.10 | 1550 | 20.19 | 1150 | 19.82 |
1000 | 21.09 | 1600 | 20.18 | 1200 | 19.72 |
油样 | 析蜡温度/℃ | ||
---|---|---|---|
1℃·min-1 | 5℃·min-1 | 10℃·min-1 | |
含蜡量10.0% | 22.67 | 22.16 | 22.00 |
含蜡量15.0% | 26.33 | 25.58 | 25.17 |
表4 不同降温速率下PM法的析蜡温度测试结果
Table 4 WAT results of PM under different cooling rates
油样 | 析蜡温度/℃ | ||
---|---|---|---|
1℃·min-1 | 5℃·min-1 | 10℃·min-1 | |
含蜡量10.0% | 22.67 | 22.16 | 22.00 |
含蜡量15.0% | 26.33 | 25.58 | 25.17 |
油样 | 析蜡温度/℃ | ||||
---|---|---|---|---|---|
NIRS温度扫描 | NIRS波长扫描 | RI | PM | DSC | |
含蜡量5.0% | 14.88 | 15.04 | 16.1 | 17.25 | 14.75 |
含蜡量10.0% | 20.15 | 20.26 | 21.0 | 21.93 | 20.10 |
含蜡量15.0% | 23.56 | 23.75 | 24.4 | 25.58 | 23.31 |
DJ原油 | 48.63 | 47.71 | 47.9 | 50.33 | 45.95 |
表5 不同测试方法的析蜡温度测试结果比较
Table 5 Comparison of WAT results of different measurement methods
油样 | 析蜡温度/℃ | ||||
---|---|---|---|---|---|
NIRS温度扫描 | NIRS波长扫描 | RI | PM | DSC | |
含蜡量5.0% | 14.88 | 15.04 | 16.1 | 17.25 | 14.75 |
含蜡量10.0% | 20.15 | 20.26 | 21.0 | 21.93 | 20.10 |
含蜡量15.0% | 23.56 | 23.75 | 24.4 | 25.58 | 23.31 |
DJ原油 | 48.63 | 47.71 | 47.9 | 50.33 | 45.95 |
测试方法 | 析蜡温度/℃ | 平均值/℃ | 标准差/℃ | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
温度扫描法 | 20.05 | 19.98 | 20.14 | 20.22 | 20.34 | 20.15 | 0.1264 |
波长扫描法 | 20.24 | 20.11 | 20.25 | 20.29 | 20.42 | 20.26 | 0.0995 |
RI | 21.0 | 21.1 | 21.0 | 21.0 | 20.9 | 21.0 | 0.0632 |
PM | 22.16 | 23.83 | 20.33 | 22.00 | 21.33 | 21.93 | 1.1479 |
DSC | 20.01 | 20.45 | 19.76 | 19.34 | 20.96 | 20.10 | 0.5592 |
表6 不同析蜡温度测试方法的重复性实验结果
Table 6 WAT results in repeatability test of different measurement methods
测试方法 | 析蜡温度/℃ | 平均值/℃ | 标准差/℃ | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
温度扫描法 | 20.05 | 19.98 | 20.14 | 20.22 | 20.34 | 20.15 | 0.1264 |
波长扫描法 | 20.24 | 20.11 | 20.25 | 20.29 | 20.42 | 20.26 | 0.0995 |
RI | 21.0 | 21.1 | 21.0 | 21.0 | 20.9 | 21.0 | 0.0632 |
PM | 22.16 | 23.83 | 20.33 | 22.00 | 21.33 | 21.93 | 1.1479 |
DSC | 20.01 | 20.45 | 19.76 | 19.34 | 20.96 | 20.10 | 0.5592 |
1 | 刘扬, 王志华, 成庆林, 等. 大庆原油管输结蜡规律与清管周期的确定[J]. 石油学报, 2012, 33(5): 174-179. |
Liu Y, Wang Z H, Cheng Q L, et al. The study of pipeline wax deposition law and pigging period for Daqing waxy crude oil[J]. Acta Petrolei Sinica, 2012, 33(5): 174-179. | |
2 | 李传宪, 蔡金洋, 程梁, 等. 沥青质引发的蜡油体系结蜡层分层现象及分层规律[J]. 化工学报, 2016, 67(6): 2426-2432. |
Li C X, Cai J Y, Cheng L, et al. Stratification phenomenon and laws of wax deposits of waxy oil triggered by asphaltene addition[J]. CIESC Journal, 2016, 67(6): 2426-2432. | |
3 | 靳文博, 敬加强, 田震, 等. 基于最小二乘支持向量机的蜡沉积速率预测[J]. 化工进展, 2014, 33(10): 2565-2569. |
Jin W B, Jing J Q, Tian Z, et al. Prediction of wax deposition rate based on least squares support vector machine[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2565-2569. | |
4 | 李传宪, 程粱, 杨飞, 等. 聚丙烯酸十八酯降凝剂对合成蜡油结蜡特性影响的研究[J]. 化工学报, 2018, 69(4): 1646-1655. |
Li C X, Cheng L, Yang F, et al. Effect of polyoctadecyl acrylate pour point depressant on characteristics of wax deposits of synthetic waxy oil[J]. CIESC Journal, 2018, 69(4): 1646-1655. | |
5 | 杨飞, 张莹, 李传宪, 等. EVA/纳米蒙脱土复合降凝剂对长庆含蜡原油的作用规律[J]. 化工学报, 2015, 66(11): 4611-4617. |
Yang F, Zhang Y, Li C X, et al. Effects of pour point depressant of EVA/nano MMT compositeson Changqing crude oil[J]. CIESC Journal, 2015, 66(11): 4611-4617. | |
6 | 陈普敏, 韩善鹏, 李鸿英, 等. 采用泰勒分散法测量蜡分子扩散系数[J]. 化工学报, 2014, 65(2): 605-612. |
Chen P M, Han S P, Li H Y, et al. Measurement of diffusion coefficients of paraffin molecules using Taylor dispersion method[J]. CIESC Journal, 2014, 65(2): 605-612. | |
7 | Chen W H, Zhao Z C. Thermodynamic modeling of wax precipitation in crude oils[J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 685-689. |
8 | Coutinho J A P, Daridon J. The limitations of the cloud point measurement techniques and the influence of the oil composition on its detection[J]. Petroleum Science and Technology, 2005, 23(9): 1113-1128. |
9 | 李思, 黄启玉, 范开峰. 石油流体析蜡特性检测技术[J]. 石油学报(石油加工), 2016, 32(6): 1287-1296. |
Li S, Huang Q Y, Fan K F. Review of measurement techniques for wax precipitation characteristics of petroleum fluids[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(6): 1287-1296. | |
10 | Daridon J L, Pauly J, Milhet M. High pressure solid–liquid phase equilibria in synthetic waxes[J]. Physical Chemistry Chemical Physics, 2002, 4(18): 4458-4461. |
11 | Brown T S, Niesen V G, Erickson D D. The effects of light ends and high pressure on paraffin formation[C]//Proceedings of the SPE 1994 Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1994: 415-429. |
12 | 李鸿英, 冯劼. 基于蜡晶显微图像的定量分析确定原油析蜡点[J]. 油气储运, 2013, 32(1): 23-26. |
Li H Y, Feng J. To determine the wax appearance temperature of crude oil by wax-crystal microscopic image of quantitative analysis[J]. Oil & Gas Storage and Transportation, 2013, 32(1): 23-26. | |
13 | Kané M, Djabourov M, Volle J L, et al. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow[J]. Fuel, 2003, 82(2): 127-135. |
14 | Haj-Shafiei S, Workman B, Trifkovic M, et al. In-situ monitoring of paraffin wax crystal formation and growth[J]. Crystal Growth & Design, 2019, 19(5): 2830-2837. |
15 | Ronningsen H P, Bjorndal B, Hansen A B, et al. Wax precipitation from North Sea crude oils(1): Crystallization and dissolution temperature, and Newtonian and non-Newtonian flow properties[J]. Energy & Fuels, 1991, 5(6): 895-908. |
16 | Monger-Mcclure T G, Tackett J E, Merrill L S. Comparisons of cloud point measurement and paraffin prediction methods[J]. SPE Production & Facilities, 1999, 14(1): 4-16. |
17 | Cazaux G, Barré L, Brucy F. Waxy crude cold start: assessment through gel structural properties[C]//Proceedings of the SPE 1998 Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1998: 729-739. |
18 | Paso K, Kallevik H, Sjöblom J. Measurement of wax appearance temperature using near-infrared(NIR) scattering[J]. Energy & Fuels, 2009, 23(10): 4988-4994. |
19 | Zhao Y, Paso K, Norrman J, et al. Utilization of DSC, NIR, and NMR for wax appearance temperature and chemical additive performance characterization[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(2): 1427-1433. |
20 | Kerker M. The Scattering of Light and Other Electromagnetic Radiation[M]. London: Academic Press, 1969: 311-413. |
21 | Alcazar-Vara L A, Buenrostro-Gonzalez E. Characterization of the wax precipitation in Mexican crude oils[J]. Fuel Processing Technology, 2011, 92(12): 2366-2374. |
22 | Snyder R, Maroncelli M, Strauss H L, et al. Temperature and phase behavior of infrared intensities: the poly-(methylene)chain[J]. Journal of Physical Chemistry, 1986, 90(22): 5623-5630. |
23 | Roehner R M, Hanson F V. Determination of wax precipitation temperature and amount of precipitated solid wax versus temperature for crude oils using FT-IR spectroscopy[J]. Energy & Fuels, 2001, 15(3): 756-763. |
24 | Kok M V, Létoffé J M, Claudy Pet al. Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry[J]. Fuel, 1996, 75(7): 787-790. |
25 | Hansen A B, Larsen E, W Bet al Pedersen. Wax precipitation from North Sea crude oils(3): Precipitation and dissolution of wax studied by differential scanning calorimetry[J]. Energy & Fuels, 1991, 5(6): 914-923. |
26 | Chen J, Zhang J, Li H. Determining the wax content of crude oils by using differential scanning calorimetry[J]. Thermochimica Acta, 2004, 410(1/2): 23-26. |
27 | Simon S L. Temperature-modulated differential scanning calorimetry: theory and application[J]. Thermochimica Acta, 2001, 374(1): 55-71. |
28 | Wang W, Huang Q, Wang C, et al. Effect of operating conditions on wax deposition in oil pipeline characterized with DSC technique[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 478-485. |
29 | 李光辉, 严美容, 李晓丹. 原油组分对含蜡原油析蜡特征的影响规律[J]. 油气储运, 2020, 39(1): 1-5. |
Li G H, Yan M R, Li X D. Influence of crude oil composition on wax precipitation characteristics of waxy crude oil[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 1-5. | |
30 | 李男, 黄启玉, 赵旗. DSC降温速率对含蜡油样析蜡特性的影响[J]. 油气储运, 2018, 37(3): 281-284. |
Li N, Huang Q Y, Zhao Q. Influence of cooling rate on wax precipitation characteristic of waxy oil samples in DSC test[J].Oil & Gas Storage and Transportation, 2018, 37(3): 281-284. | |
31 | Fan K, Huang Q, Li S. Determination of the optimizing operating procedure for DSC test of wax-solvent samples with narrow and sharp wax peak and error analysis of data reliability[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1713-1725. |
32 | 盛丽媛, 陈朝辉, 郭巍. 重复加热对加剂改性原油蜡晶形态与结构的影响[J]. 油气储运, 2018, 37(9): 1005-1012. |
Sheng L Y, Chen C H, Guo W. Effect of reheating on the morphology and structure of wax crystals in PPD-beneficiated crude oil[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 1005-1012. | |
33 | Kök M V, Varfolomeev M A, Nurgaliev D K. Wax appearance temperature (WAT) determinations of different origin crude oils by differential scanning calorimetry[J]. Journal of Petroleum Science & Engineering, 2018, 168: 542-545. |
34 | Piroozian A, Hemmati H, Ismail I, et al. Effect of emulsified water on the wax appearance temperature of water-in-waxy-crude-oil emulsions[J]. Thermochimica Acta, 2016, 637: 132-142. |
35 | Sun G Y, Li C X, Yang F, et al. Experimental investigation on the gelation process and gel structure of water-in-waxy crude oil emulsion[J]. Energy & Fuels, 2017, 31(1): 201-278. |
36 | Juyal P, Cao T, Yen A, et al. Study of live oil wax precipitation with high-pressure micro-differential scanning calorimetry[J]. Energy & Fuels, 2011, 25(2): 568-572. |
37 | Ijeomah C E, Dandekar A Y, Chukwu G A, et al. Measurement of wax appearance temperature under simulated pipeline (dynamic)conditions[J]. Energy & Fuels, 2008, 22(4): 2437-2442. |
38 | Coutinho J A P, Mirante F, Ribeiro J C, et al. Cloud and pour points in fuel blends[J]. Fuel, 2002, 81(7): 963-967. |
39 | 聂向荣, 杨胜来. 高压含气条件下含蜡原油析蜡点测量方法[J]. 断块油气田, 2016, 23(3): 390-392. |
Nie X R, Yang S L. Measurement method for wax appearance temperature of waxy crude oil under high-pressure and gas-·bearing[J]. Fault-block Oil & Gas Field, 2016, 23(3): 390-392. | |
40 | Mohamed N H, Zaky M T. Separation of microcrystalline waxes from local crude petrolatums using solvent-antisolvent mixtures[J]. Petroleum Science and Technology, 2004, 22(11/12): 1553-1569. |
41 | Han S, Huang Z, Senra M, et al. Method to determine the wax solubility curve in crude oil from centrifugation and high temperature gas chromatography measurements[J]. Energy & Fuels, 2010, 24(3): 1753-1761. |
42 | Martos C, Coto B, Espada J J, et al. Experimental determination and characterization of wax fractions precipitated as a function of temperature[J]. Energy & Fuels, 2008, 22(2): 708-714. |
43 | Roehner R M, Fletcher J M, Hanson F V. Comparative compositional study of crude oil solids from the Trans Alaska Pipeline System using high-temperature gas chromatography[J]. Energy & Fuels, 2002, 16(1): 211-217. |
44 | Coto B, Martos C, Peña J L, et al. A new method for the determination of wax precipitation from non-diluted crude oils by fractional precipitation[J]. Fuel, 2008, 87(10/11): 2090-2094. |
45 | Leontaritis K J, Leontaritis J D. Cloud point and wax deposition measurement techniques[C]//Proceedings of the SPE 2003 International Symposium on Oilfield Chemistry. Houston: Society of Petroleum Engineers, 2003: SPE-80267-MS. |
46 | Foust A S, Wenzel L A, Clump C W, et al. Principles of Unit Operations[M]. 2nd ed. New York: John Wiley Sons, 1980. |
47 | Meray V R, Volle J L, Schranz C J P, et al. Influence of light ends on the onset crystallization temperature of waxy crudes within the frame of multiphase transport[C]//Proceedings of the 1993 SPE Annual Technical Conference and Exhibition. Houston: Society of Petroleum Engineers, 1993: SPE-26549-MS. |
48 | Chen H, Yang S, Nie X, et al. Ultrasonic detection and analysis of wax appearance temperature of kingfisher live oil[J]. Energy & Fuels, 2014, 28(4): 2422-2428. |
49 | 姜彬, 邱凌, 李雪, 等.利用超声波方法确定地层含气原油的析蜡点[J]. 石油勘探与开发, 2014, 41(4): 462-465. |
Jiang B, Qiu L, Li X, et al. Measurement of the WAT of waxy oil under the reservoir condition with ultrasonic method[J]. Petroleum Exploration and Development, 2014, 41(4): 462-465. | |
50 | Tinsley J F. The effects of polymers and asphaltenes upon wax gelation and deposition[D]. Princeton: Princeton University, 2008. |
51 | Kriz P, Andersen S I. Effect of asphaltenes on crude oil wax crystallization[J]. Energy & Fuels, 2005, 19(3): 948-953. |
52 | Alcazar-Vara L A, Buenrostro-Gonzalez E. Experimental study of the influence of solvent and asphaltenes on liquid-solid phase behavior of paraffinic model systems by using DSC and FT-IR techniques[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(3): 1321-1329. |
53 | Alcazar-Vara L A, Garcia-Martinez J A, Buenrostro-Gonzalez E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems[J]. Fuel, 2012, 93(1): 200-212. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[5] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[6] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[7] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[10] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[11] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[12] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[13] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[14] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[15] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 589
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 591
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||