1 |
赵劲潮, 马增益, 陈宇明, 等. 高含盐有机废水流化床焚烧过程碱金属盐的迁移规律研究[J]. 能源与环境, 2016, 137(4): 51-55.
|
|
Zhao J C, Ma Z Y, Chen Y M, et al. Migration of alkali metal salts of high salinity organic wastewater in fluidized bed combustion[J]. Energy and Environment, 2016, 137(4): 51-55.
|
2 |
陈宇明. 含盐高浓度有机废液流化床焚烧灰渣黏结特性研究[D]. 杭州: 浙江大学, 2017.
|
|
Chen Y M. Study of slag cohesive behavior in fluidized bed incineration of high salinity organic wastewater[D]. Hangzhou: Zhejiang University, 2017.
|
3 |
Mao L R, Li H X, Zhang Y C, et al. Preparing coal water slurry from BDO tar to achieve resource utilization: combustion process of BDO tar-coal water slurry[J]. Energy & Fuels, 2019, 33(10): 10297-10306.
|
4 |
闫景春, 沈来宏, 蒋守席, 等. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
|
|
Yan J C, Shen L H, Jiang S X, et al. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char [J]. CIESC Journal, 2019, 70(5): 1913-1922.
|
5 |
Wang C A, Zhu X, Liu X, et al. Correlations of chemical properties of high-alkali solid fuels: a comparative study between Zhundong coal and biomass[J]. Fuel, 2018, 211: 629-637.
|
6 |
Qi X B, Song G L, Yang S B, et al. Exploration of effective bed material for use as slagging/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite[J]. Fuel, 2018, 217: 577-586.
|
7 |
Ji H S, Wu X J, Dai B Q, et al. Xinjiang lignite ash slagging and flow under the weak reducing environment at 1300℃–release of sodium out of slag and its modelling from the mass transfer perspective[J]. Fuel Processing Technology, 2018, 170: 32-43.
|
8 |
Chen R Y, Jia W B, Xu X Y, et al. Optimization of the corrosion behavior of mullite-SiC castable against alkali vapor via coating high temperature glaze[J]. Journal of Alloys and Compounds, 2019, 770: 945-951.
|
9 |
Weinberg A V, Varona C, Chaucherie X, et al. Corrosion of Al2O3-SiO2 refractories by sodium and sulfur vapors: a case study on hazardous waste incinerators[J]. Ceramics International, 2017, 43(7): 5743-5750.
|
10 |
孟晓晓, 孙锐, 袁皓, 等. 不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J]. 化工学报, 2017, 68(4): 1600-1607.
|
|
Meng X X, Sun R, Yuan H, et al. Effect of different pyrolysis temperature on alkali metal K and Na emission and exitence in semi-char[J]. CIESC Journal, 2017, 68(4): 1600-1607.
|
11 |
Niu Y Q, Gong Y H, Zhang X, et al. Effects of leaching and additives on the ash fusion characteristics of high-Na/Ca Zhundong coal[J]. Journal of the Energy Institute, 2019, 92(4): 1115-1122.
|
12 |
Liu Y Q, Cheng L M, Zhao Y G, et al. Transformation behavior of alkali metals in high-alkali coals[J]. Fuel Processing Technology, 2018, 169: 288-294.
|
13 |
Kerscher F, Stetka M, Spliethoff H. The reaction kinetics of gaseous alkali capture by kaolin in syngas atmosphere[J]. Chemical Engineering & Technology, 2018, 41(9): 1881-1888.
|
14 |
张军, 汉春利, 刘坤磊, 等. 煤中碱金属及其在燃烧中的行为[J]. 热能动力工程, 1999, 80(14): 83-85.
|
|
Zhang J, Han C L, Liu K L, et al. Alkali metals in coal and their behavior in combustion[J]. Journal of Engineering for Thermal Energy and Power, 1999, 80(14): 83-85.
|
15 |
Ji J Q, Cheng L M, Liu Y Q, et al. Investigation on sodium fate for high alkali coal during circulating fluidized bed combustion[J]. Energy & Fuels, 2019, 33(2): 916-926.
|
16 |
卫小芳, 刘铁峰, 黄戒介, 等. 澳大利亚高盐煤中钠在热解过程中的形态变迁[J]. 燃料化学学报, 2010, 38(2): 144-148.
|
|
Wei X F, Liu T F, Huang J J, et al.Transformation of Na in an Australian high-sodium coal during pyrolysis[J]. Fuel Chem. Technol., 2010, 38(2): 144-148.
|
17 |
陈慧琴. 钠盐的高温挥发及其与水泥生料矿物的固相反应行为研究[D]. 武汉: 华中科技大学, 2016.
|
|
Chen H Q. High-temperature volatilization of sodium salts and their solid-phase reactions with cement raw materials[D]. Wuhan: Huazhong University of Science & Technology, 2016.
|
18 |
Ji J Q, Cheng L M, Liu Y Q, et al. Direct measurement of gaseous sodium in flue gas for high-alkali coal[J]. Energy & Fuels, 2019, 33: 4169-4176.
|
19 |
Wang Y W, Wang Z Q, Huang J J, et al. Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1213-1220.
|
20 |
Nascimento A L C S, Teixeira J A, Nunes W D G, et al. Thermal behavior of glycolic acid, sodium glycolate and its compounds with some bivalent transition metal ions in the solid state[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(12): 1463-1472.
|
21 |
刘朝文. 甲酸钠脱氢制草酸钠的动力学研究[D]. 北京: 北京化工大学, 2007.
|
|
Liu Z W. Reaction kinetics of sodium oxlate from sodium formate by dehydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2007.
|
22 |
Marcilla A, Gómez-Siurana A, Beltrán M, et al. TGA/FTIR study of the behavior of sodium and potassium citrates in the decomposition of 3R4F tobacco N2 and air atmospheres[J]. Thermochimica Acta, 2017, 625: 31-38.
|
23 |
彭强, 杨晓西, 丁静, 等. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013, 64(5): 1507-1512.
|
|
Peng Q, Yang X X, Ding J, et al. Experimental study and mechanism analysis for high-temperature thermal stability of ternary nitrate salt[J]. CIESC Journal, 2013, 64(5): 1507-1512.
|
24 |
赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2090.
|
|
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2090.
|
25 |
Du L C, Ding J, Tian H Q, et al. Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process[J]. Applied Energy, 2017, 204: 1225-1230.
|
26 |
Jiang Y F, Sun Y P, Liu M, et al. Eutectic Na2CO3-NaCl salt: a new phase change material for high temperature thermal storage[J]. Solar Energy Materials & Solar Cells, 2016, 152: 155-160.
|
27 |
Ye L G, Tang C B, Chen Y M, et al. The thermal physical properties and stability of the eutectic composition in a Na2CO3–NaCl binary system[J]. Thermochimica Acta, 2014, 596: 14-20.
|
28 |
Gao Q, Li S Q, Yuan Y, et al. Ultrafine particulate matter formation in the early stage of pulverized coal combustion of high-sodium lignite[J]. Fuel, 2015, 158: 224-231.
|
29 |
Tanner J, Bläsing M, Müller M, et al. The temperature-dependent release of volatile inorganic species from Victorian brown coals and German lignites under CO2 and H2O gasification conditions[J]. Fuel, 2015, 158: 72-80.
|
30 |
刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2002.
|
|
Liu G Q, Ma L X, Liu J, et al. Properties Databook of Chemistry and Chemical Engineering[M]. Beijing: Chemical Industry Press, 2002.
|
31 |
张伟伟, 陈晓春, 刘朝文, 等. 甲酸钠热分解行为的实验研究[J]. 北京化工大学学报, 2007, 34(6): 566-569.
|
|
Zhang W W, Chen X C, Liu Z W, et al. Formation of sodium oxalate by thermal decomposition of sodium formate[J]. Journal of Beijing University of Chemical Technology, 2007, 34(6): 566-569.
|
32 |
Stjernberg J, Lindblom B, Wikström J, et al. Microstructural characterization of alkali metal mediated high temperature reactions in mullite based refractories[J]. Ceramics International, 2010, 36(2): 733-740.
|
33 |
尹洪基. 红柱石——一种优异的抗钠蒸气侵蚀的耐火原料[J]. 耐火与石灰, 2013, 38(1): 43-48.
|
|
Yin H J. Andalusite—an excellent refractory material which is resistant to sodium vapor erosion[J]. Refractories & Lime, 2013, 38(1): 43-48.
|
34 |
刘璐. 碱金属与耐火材料反应特性研究[D]. 北京: 华北电力大学, 2016.
|
|
Liu L. Research on alkali reaction with refractories[D]. Beijing: North China Electric Power University, 2016.
|