1 |
Dotto J, Fagundes-Klen M R, Veit M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208: 656-665.
|
2 |
Demichelis F, Fiore S, Onofrio M. Pre-treatments aimed at increasing the biodegradability of cosmetic industrial waste[J]. Process Safety and Environmental Protection, 2018, 118: 245-253.
|
3 |
张婧, 翟洪艳, 季民. 混凝对藻源有机物的去除及其消毒副产物的控制[J]. 中国给水排水, 2016, 32(3): 56-60.
|
|
Zhang J, Zhai H Y, Ji M. Removal of algal organic matter and control of disinfection by-products by coagulation[J]. China Water & Wastewater, 2016, 32(3): 56-60.
|
4 |
Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168.
|
5 |
Saxena K, Brighu U, Choudhary A. Parameters affecting enhanced coagulation: a review[J]. Environmental Technology Reviews, 2018, 7(1): 156-176.
|
6 |
Kumari M, Gupta S K. A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water[J]. Journal of Cleaner Production, 2020, 244: 118899.
|
7 |
El-Gohary F, Tawfik A, Mahmoud U. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater[J]. Desalination, 2010, 252(1/2/3): 106-112.
|
8 |
Rana S, Suresh S. Comparison of different coagulants for reduction of COD from textile industry wastewater[J]. Materials Today: Proceedings, 2017, 4(2): 567-574.
|
9 |
程拓, 徐斌, 朱贺振, 等. 南水北调丹江口水库原水有机物分子组成规律及其强化混凝处理的效能对比[J]. 环境科学, 2015, 36(3): 898-904.
|
|
Cheng T, Xu B, Zhu H Z, et al. Composition of NOM in raw water of Danjiangkou reservoir of South-to-North water diversion project and comparison of efficacy of enhanced coagulation[J]. Environmental Science, 2015, 36(3): 898-904.
|
10 |
张新端. 分子量和组成成分在渗滤液处理工艺中的变化[J]. 再生资源与循环经济, 2019, 12(6): 35-37.
|
|
Zhang X D. The changes of MW and components in the leachate treatment process [J]. Recyclable Resources and Circular Economy, 2019, 12(6): 35-37.
|
11 |
李磊, 李忠佩, 刘明, 等. 3DEEM和PARAFAC的猪场废水DOM组成特征分析[J]. 光谱学与光谱分析, 2017, 37(2): 577-583.
|
|
Li L, Li Z P, Liu M, et al. Characterizing dissolved organic matter (DOM) in wastewater from scale pig farms using three-dimensional excitation-emission matrices (3DEEM) [J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 577-583.
|
12 |
赵岳阳, 秦树林. PAC/PAFC混凝强化生活污水的预处理影响研究[J]. 浙江化工, 2013, 44(7): 40-42.
|
|
Zhao Y Y, Qin S L. Study on coagulation enhancing pretreatment of domestic sewage with PAC/PAFC[J]. Zhejiang Chemical Industry, 2013, 44(7): 40-42.
|
13 |
Lal K, Garg A. Effectiveness of synthesized aluminum and iron based inorganic polymer coagulants for pulping wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103204.
|
14 |
Zhu G, Zheng H, Zhang Z, et al. Characterization and coagulation-flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 2011, 178: 50-59.
|
15 |
Sun H, Jiao R, Xu H, et al. The influence of particle size and concentration combined with pH on coagulation mechanisms[J]. Journal of Environmental Sciences, 2019, 82: 39-46.
|
16 |
Sher F, Malik A, Liu H. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 684-689.
|
17 |
李敏, 宗栋良. 混凝中Zeta电位的影响因素[J]. 环境科技, 2010, 23(3): 9-11.
|
|
Li M, Zong D L. Influence factors on zeta potential in coagulation[J]. Environmental Science and Technology, 2010, 23(3): 9-11.
|
18 |
王慧云, 崔亚男, 张春燕. 影响胶体粒子zeta电位的因素[J]. 中国医药导报, 2010, 7(20): 28-30.
|
|
Wang H Y, Cui Y N, Zhang C Y. Influence factors on the zeta potential of colloid particle[J]. China Medical Herald, 2010, 7(20): 28-30.
|
19 |
高宝玉, 魏锦程, 王燕, 等. 聚合铁复合絮凝剂处理地表水的性能研究[J]. 中国给水排水, 2006, 22(7): 64-68.
|
|
Gao B Y, Wei J C, Wang Y, et al. Study on polyferric-organic composite flocculants for treatment of surface water[J]. China Water & Wastewater, 2006, 22(7): 64-68.
|
20 |
Duan J, Gregory J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100: 475-502.
|
21 |
Wang P, Jiao R, Liu L, et al. Optimized coagulation pathway of Al13: effect of in-situ aggregation of Al13[J]. Chemosphere, 2019, 230: 76-83.
|
22 |
Davis C C, Edwards M. Coagulation with hydrolyzing metal salts: mechanisms and water quality impacts[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(4): 303-347.
|
23 |
Kadooka H, Kiso Y, Goto S, et al. Flocculation behavior of colloidal suspension by use of inorganic and polymer flocculants in powder form[J]. Journal of Water Process Engineering, 2017, 18: 169-175.
|
24 |
王同成. PAC、PFS混凝剂去除微污染水体中PCBs效果研究[J]. 工业用水与废水, 2019, 50(1): 34-39.
|
|
Wang T C. Removal of PCBs in micro-polluted water by PAC and PFS coagulants[J]. Industrial Water & Wastewater, 2019, 50(1): 34-39.
|
25 |
常玉广, 夏四清. 絮凝胶体颗粒的表面电位对絮凝行为的影响[C]//全国环境化学大会. 2009.
|
|
Chang Y G, Xia S Q. Effect of surface potential of flocculent particles on flocculation behavior[C]// National Environmental Chemistry Conference. 2009.
|
26 |
任伟, 王栋, 王鹤霏, 等. 阴离子表面活性剂与铝盐复合絮凝去除苯甲酸[J]. 环境科学与技术, 2017, 40(11): 132-137.
|
|
Ren W, Wang D, Wang H F, et al. Synergistic flocculation of anionic surfactant and aluminum salt to remove benzoic acid[J]. Environmental Science & Technology, 2017, 40(11): 132-137.
|
27 |
王学春, 方建华, 陈波水, 等. 几种脂肪酸甲酯的热解特性及动力学研究[J]. 中国油脂, 2015, 40(9): 50-55.
|
|
Wang X C, Fang J H, Chen B S, et al. Study on pyrolysis characteristics and kinetics of several fatty acid methyl esters[J]. China Oils and Fats, 2015, 40(9): 50-55.
|
28 |
谢铭丰. C3~C5直链脂肪酸甲酯的热解实验及动力学模型研究[D]. 合肥: 中国科学技术大学, 2012.
|
|
Xie M F. Experimental study on pyrolysis and kinetic model of C3—C5 linear fatty acid methyl ester[D]. Hefei: University of Science and Technology of China, 2012.
|
29 |
张兰河, 赵倩男, 张海丰, 等. Ca2+对污泥硝化活性和絮凝沉降性能的影响[J]. 环境科学, 2019, 40(9): 4160-4168.
|
|
Zhang L H, Zhao Q N, Zhang H F, et al. Effect of Ca2+ on the nitrification activity and flocculation and sedimentation performance of sludge[J]. Environmental Science, 2019, 40(9): 4160-4168.
|
30 |
贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
|
|
Jia Y P, Zhang Z, Tong Z W, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801.
|
31 |
Zhang M, Wang Z, Li P, et al. Bio-refractory dissolved organic matter and colorants in cassava distillery wastewater: characterization, coagulation treatment and mechanisms[J]. Chemosphere, 2017, 178: 259-267.
|
32 |
姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416.
|
|
Yao L L, Tu X, Yu H B, et al. Evaluation of dissolved organic matter removal in municipal wastewater based on fluorescence regional integration[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 411-416.
|
33 |
Hua G, Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size[J]. Environmental Science & Technology, 2007, 41(9): 3309-3315.
|