化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2599-2611.DOI: 10.11949/0438-1157.20200230
收稿日期:
2020-03-04
修回日期:
2020-04-07
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
李永峰
作者简介:
杨旺(1989—),男,博士,讲师,基金资助:
Wang YANG(),Yun LI,Xiaojuan TIAN,Fan YANG,Yongfeng LI()
Received:
2020-03-04
Revised:
2020-04-07
Online:
2020-06-05
Published:
2020-06-05
Contact:
Yongfeng LI
摘要:
石墨烯因其独特的二维结构和优异的物理性能在众多领域中引起了广泛的关注,高质量石墨烯的制备是实现其应用价值的前提。尽管目前石墨烯的制备方法较多,但是开发绿色、低成本、规模化制备方法的道路仍然充满挑战。物理法剥离石墨能够实现高结晶石墨烯的制备,特别是超临界CO2流体具有廉价、绿色、稳定、易分离且可重复利用的优势,在石墨烯制备上展现出巨大的应用潜力。以超临界CO2制备石墨烯为出发点,梳理了近年来超临界CO2法剥离石墨制备石墨烯的研究进展,重点阐述了制备过程中的强化剥离手段,期望对未来石墨烯材料的制备提供思路。
中图分类号:
杨旺, 李云, 田晓娟, 杨帆, 李永峰. 超临界CO2剥离法制备石墨烯的过程强化研究[J]. 化工学报, 2020, 71(6): 2599-2611.
Wang YANG, Yun LI, Xiaojuan TIAN, Fan YANG, Yongfeng LI. Research progress of strengthening methods in graphene preparation by supercritical CO2 exfoliation[J]. CIESC Journal, 2020, 71(6): 2599-2611.
1 | Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. |
2 | Novoselov K S, Geim A K. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
3 | Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. |
4 | Yu X, Cheng H, Zhang M, et al. Graphene-based smart materials[J]. Nature Reviews Materials, 2017, 2(9): 1-13. |
5 | Torres T. Graphene chemistry[J]. Chemical Society Reviews, 2017, 46(15): 4385-4386. |
6 | Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene[J]. Applied Physics Letters, 2007, 91(16): 163513. |
7 | Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
8 | Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene[J]. Science, 2007, 315(5817): 1379-1379. |
9 | Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399. |
10 | Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 2019, 363(6431): 1059-1064. |
11 | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. |
He D F, Wu J, Liu Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894. | |
12 | Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic Metals, 2015, 210: 95-108. |
13 | Yan K A I, Fu L E I, Peng H, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-2274. |
14 | Zhang Y I, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339. |
15 | Mishra N, Boeckl J, Motta N, et al. Graphene growth on silicon carbide: a review[J]. Physica Status Solidi (a), 2016, 213(9): 2277-2289. |
16 | Virojanadara C, Syväjarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6 H-SiC (0001)[J]. Physical Review B, 2008, 78(24): 245403. |
17 | Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339. |
18 | Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. |
19 | Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624. |
20 | Li L, Xu J, Li G, et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation[J]. Chemical Engineering Journal, 2016, 284: 78-84. |
21 | Zhang X, Heinonen S, Levänen E. Applications of supercritical carbon dioxide in materials processing and synthesis[J]. RSC Advances, 2014, 4(105): 61137-61152. |
22 | Sun Z, Fan Q, Zhang M, et al. Supercritical fluid-facilitated exfoliation and processing of 2D materials[J]. Advanced Science, 2019, 6(18): 1901084. |
23 | Doustkhah E, Farajzadeh M, Mohtasham H, et al. Exfoliated graphene-based 2D materials: synthesis and catalytic behaviors[J]. Handbook of Graphene Set, 2019, 1: 529-558. |
24 | Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Applied Physics Letters, 2005, 86(7): 073104-073106. |
25 | de Andres P L, Ramírez R, Vergés J A. Strong covalent bonding between two graphene layers[J]. Physical Review B, 2008, 77(4): 045403. |
26 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
27 | Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. |
28 | Kiran E. Supercritical fluids and polymers-the year in review-2014[J]. The Journal of Supercritical Fluids, 2016, 110: 126-153. |
29 | Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing[J]. Nature, 1996, 383(6598): 313. |
30 | Adschiri T, Yoko A. Supercritical fluids for nanotechnology[J]. The Journal of Supercritical Fluids, 2018, 134: 167-175. |
31 | 胡玉婷. 在超临界二氧化碳体系中石墨烯剥离技术的研究[D]. 济南: 山东大学, 2014. |
Hu Y T. The study in the exfoliation of graphene in supercritical carbon dioxide system [D]. Jinan: Shandong University, 2014. | |
32 | Khan U, Porwal H, Neill A O, et al. Solvent-exfoliated graphene at extremely high concentration[J]. Langmuir, 2011, 27(15): 9077-9082. |
33 | Li L, Zheng X, Wang J, et al. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 144-151. |
34 | Li L, Zhang J, Liu Y, et al. Facile fabrication of Pt nanoparticles on 1-pyrenamine functionalized graphene nanosheets for methanol electrooxidation[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 527-533. |
35 | Rangappa D, Sone K, Wang M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry-A European Journal, 2010, 16(22): 6488-6494. |
36 | Liu C, Hu G, Gao H. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide[J]. The Journal of Supercritical Fluids, 2012, 63: 99-104. |
37 | Jang J H, Rangappa D, Kwon Y U, et al. Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties[J]. Journal of Materials Chemistry, 2011, 21(10): 3462-3466. |
38 | Hadi A, Karimi-Sabet J, Moosavian S M A, et al. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach[J]. The Journal of Supercritical Fluids, 2016, 107: 92-105. |
39 | Padmajan S S, Poulin P, Aymonier C. Prospects of supercritical fluids in realizing graphene-based functional materials[J]. Advanced Materials, 2016, 28(14): 2663-2691. |
40 | Pu N W, Wang C A, Sung Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters, 2009, 63(23): 1987-1989. |
41 | Sim H S, Kim T A, Lee K H, et al. Preparation of graphene nanosheets through repeated supercritical carbon dioxide process[J]. Materials Letters, 2012, 89: 343-346. |
42 | Gomez-Ballesteros J L, Callejas-Tovar A, Coelho L A F, et al. Molecular dynamics studies of graphite exfoliation using supercritical CO2[M]//Design and Applications of Nanomaterials for Sensors. Dordrecht: Springer, 2014: 171-183. |
43 | Wu B, Yang X. A molecular simulation of interactions between graphene nanosheets and supercritical CO2[J]. Journal of Colloid and Interface Science, 2011, 361(1): 1-8. |
44 | Wang Y, Chen Z, Wu Z, et al. High-efficiency production of graphene by supercritical CO2 exfoliation with rapid expansion[J]. Langmuir, 2018, 34(26): 7797-7804. |
45 | Pershin V F, Krasnyanskiy M N, Alhilo Z A A, et al. Production of few-layer and multilayer graphene by shearing exfoliation of graphite in liquids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, (6931): 012023. |
46 | Amiri A, Naraghi M, Ahmadi G, et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges[J]. Flat Chem., 2018, 8: 40-71. |
47 | 李磊, 李耿辉, 李永峰, 等. 流体剪切辅助超临界CO2技术制备石墨烯[J]. 科学通报, 2015, 60(26): 2561-2566. |
Li L, Li G H, Li Y F, et al. Preparation of graphene from graphite by supercritical CO2 exfoliation assisted with fluid shear[J]. Chinese Science Bulletin, 2015, 60(26): 2561-2566. | |
48 | Song N, Jia J, Wang W, et al. Green production of pristine graphene using fluid dynamic force in supercritical CO2[J]. Chemical Engineering Journal, 2016, 298: 198-205. |
49 | Gai Y, Wang W, Xiao D, et al. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: experiment and simulation[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8220-8229. |
50 | Shang T, Feng G, Li Q, et al. Production of graphene nanosheets by supercritical CO2 process coupled with micro-jet exfoliation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(12): 691-698. |
51 | Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences, 2012, 109(15): 5588-5593. |
52 | 陈庆, 孙丽枝, 曾军堂. 机械法剪切剥离制备石墨烯的研究现状和发展趋势[J]. 新材料产业, 2016, (10): 43-47. |
Chen Q, Sun L Z, Cen J T. Research status and development trend of mechanically processed shear stripping to prepare graphene[J]. Advanced Materials Industry,2016, (10): 43-47. | |
53 | Chen J, Duan M, Chen G. Continuous mechanical exfoliation of graphene sheets via three-roll mill[J]. Journal of Materials Chemistry, 2012, 22(37): 19625-19628. |
54 | Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry, 2010, 20(28): 5817-5819. |
55 | Zhao W, Wu F, Wu H, et al. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling[J]. Journal of Nanomaterials, 2010, 10(6):1-5. |
56 | Aparna R, Sivakumar N, Balakrishnan A, et al. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants[J]. Journal of Renewable and Sustainable Energy, 2013, 5(3): 033123. |
57 | Chen Z, Miao H, Wu J, et al. Scalable production of hydrophilic graphene nanosheets via in situ ball-milling-assisted supercritical CO2 exfoliation[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 6939-6944. |
58 | Tao H, Zhang Y, Gao Y, et al. Scalable exfoliation and dispersion of two-dimensional materials—an update[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 921-960. |
59 | Notley S M. Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition[J]. Langmuir, 2012, 28(40): 14110-14113. |
60 | 刘霞, 黄平, 江莞. 超声剥离法制备石墨烯纳米片[J]. 中国科技论文, 2016, 11(10): 1184-1187. |
Liu X, Huang P, Jiang W. Preparation of graphene nanosheets by ultrasonic stripping method[J]. China Science Paper, 2016, 11(10): 1184-1187. | |
61 | Krishnamoorthy K, Kim G S, Kim S J. Graphene nanosheets: ultrasound assisted synthesis and characterization[J]. Ultrasonics Sonochemistry, 2013, 20(2): 644-649. |
62 | Wang W, Wang Y, Gao Y, et al. Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries[J]. The Journal of Supercritical Fluids, 2014, 85: 95-101. |
63 | Gao Y, Shi W, Wang W, et al. Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2839-2845. |
64 | Gai Y, Wang W, Xiao D, et al. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: simulation and experiment[J]. Ultrasonics Sonochemistry, 2018, 41: 181-188. |
65 | Gao H, Zhu K, Hu G, et al. Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J]. Chemical Engineering Journal, 2017, 308: 872-879. |
66 | Adel M, Abdel-Karim R, Abdelmoneim A. Studying the conversion of graphite into nanographene sheets using supercritical phase exfoliation method[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(7): 589-602. |
67 | Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials[J]. Chemistry-A European Journal, 2010, 16(18): 5246-5259. |
68 | Wang W, Gai Y, Song N, et al. Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16701-16708. |
69 | Zheng X, Xu Q, Li J, et al. High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers[J]. RSC Advances, 2012, 2(28): 10632-10638. |
70 | Mann J A, Rodríguez-López J, Abruña H D, et al. Multivalent binding motifs for the noncovalent functionalization of graphene[J]. Journal of the American Chemical Society, 2011, 133(44): 17614-17617. |
71 | Lee D W, Kim T, Lee M. An amphiphilic pyrene sheet for selective functionalization of graphene[J]. Chemical Communications, 2011, 47(29): 8259-8261. |
72 | Knieke C, Berger A, Voigt M, et al. Scalable production of graphene sheets by mechanical delamination[J]. Carbon, 2010, 48(11): 3196-3204. |
73 | Li L, Zheng X, Wang J, et al. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 144-151. |
74 | Xu S, Xu Q, Wang N, et al. Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2[J]. Chemistry of Materials, 2015, 27(9): 3262-3272 |
75 | Xu Q Q, Zhao W, Zhi J T, et al. Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing[J]. Carbon, 2018, 135: 180-186. |
76 | Rokuta E, Hasegawa Y, Suzuki K, et al. Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni (111)[J]. Physical Review Letters, 1997, 79(23): 4609-4612. |
77 | Zhi C, Bando Y, Tang C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Advanced Materials, 2009, 21(28): 2889-2893. |
78 | Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. |
79 | Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700. |
80 | Ramakrishna M H S S, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. |
81 | Tian X, Wu J, Li Q, et al. Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide[J]. Journal of Materials Science, 2018, 53(10): 7258-7265. |
82 | Tian X, Li Y, Chen Z, et al. Shear-assisted production of few-layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites[J]. Scientific Reports, 2017, 7(1): 1-9. |
83 | Wang Y, Zhou C, Wang W, et al. Preparation of two-dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4379-4382. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[8] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[9] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[10] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[11] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[12] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[13] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||