化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4711-4719.DOI: 10.11949/0438-1157.20200346
何家垣1(),蒋壮飞1,马蓉蓉1,杨莉莉1,李清瑶1,谭玲2,陈志涛1,张起辉1()
收稿日期:
2020-04-01
修回日期:
2020-05-22
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
张起辉
作者简介:
何家垣(1995-),男,硕士研究生,基金资助:
Jiayuan HE1(),Zhuangfei JIANG1,Rongrong MA1,Lili YANG1,Qingyao LI1,Ling TAN2,Zhitao CHEN1,Qihui ZHANG1()
Received:
2020-04-01
Revised:
2020-05-22
Online:
2020-10-05
Published:
2020-10-05
Contact:
Qihui ZHANG
摘要:
以四氧化三铁(Fe3O4)纳米粒子为支撑材料,模板选用芒柄花黄素,温敏功能单体和辅助功能单体分别选用N-异丙基丙烯酰胺(NIPAM)和甲基丙烯酸(MAA),制备出磁性和温度双响应型分子印迹材料(MTMIPs),并结合高效液相色谱法(HPLC)将其用于红车轴草中芒柄花黄素的定向萃取研究。利用扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、热重分析(TGA)、磁性分析(VSM)等手段对MTMIPs进行表征,随后对其温敏及吸附性能进行考察。结果表明,MTMIPs为核壳型结构,热稳定性好,具有良好的吸附性能(16.43 mg/g)和温敏特性,对芒柄花黄素的吸附动力学符合准二级动力学模型,吸附过程符合Langmuir单分子层吸附。HPLC检测结果显示MTMIPs可用于从复杂样品中分离富集芒柄花黄素。
中图分类号:
何家垣, 蒋壮飞, 马蓉蓉, 杨莉莉, 李清瑶, 谭玲, 陈志涛, 张起辉. 磁性温敏分子印迹材料用于药用植物中富集单一成分——芒柄花黄素的分离与富集[J]. 化工学报, 2020, 71(10): 4711-4719.
Jiayuan HE, Zhuangfei JIANG, Rongrong MA, Lili YANG, Qingyao LI, Ling TAN, Zhitao CHEN, Qihui ZHANG. Magnetic temperature-sensitive molecularly imprinted materials for separation and enrichment of single component of formononetin in medicinal plants[J]. CIESC Journal, 2020, 71(10): 4711-4719.
图2 Fe3O4@SiO2和MTMIPs 电镜表征图:Fe3O4@SiO2扫描电镜图(a);MTMIPs 扫描电镜图(b);MTMIPs 透射电镜图(c)
Fig.2 SEM images of Fe3O4@SiO2NPs (a), MTMIPs (b), and TEM of MTMIPs (c)
图3 MTMIPs与Fe3O4@SiO2的FT-IR图(a);MTMIPs 的TGA分析曲线(b);MTMIPs与Fe3O4的磁性分析(VSM)曲线(1 Oe=79.5775 A/m)(c);Fe3O4、MTMIPs与Fe3O4@SiO2的XRD谱图(d)
Fig.3 FT-IR spectra of MTMIPs and Fe3O4@SiO2 (a); TGA analysis curves of MTMIPs (b); Magnetization curves of MTMIPs and Fe3O4 nanoparticles (c); XRD pattern of Fe3O4, Fe3O4@SiO2 and MTMIPs nanoparticles(d)
材料 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
R2 | KL/(ml/mg) | R2 | α | m | |
MTNIPs | 0.994 | 0.010 | 0.951 | 0.364 | 0.537 |
MTMIPs | 0.966 | 0.005 | 0.805 | 0.185 | 0.798 |
表1 等温吸附模型拟合参数
Table 1 The fitting parameters of isothermal adsorption model
材料 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
R2 | KL/(ml/mg) | R2 | α | m | |
MTNIPs | 0.994 | 0.010 | 0.951 | 0.364 | 0.537 |
MTMIPs | 0.966 | 0.005 | 0.805 | 0.185 | 0.798 |
材料 | Pseudo-first-order | Pseudo-second-order | ||
---|---|---|---|---|
K1/min-1 | R2 | K2/(g/(mg·min)) | R2 | |
MTNIPs | 0.053 | 0.860 | 0.050 | 0.955 |
MTMIPs | 0.061 | 0.918 | 0.007 | 0.988 |
表2 吸附动力学模型拟合参数
Table 2 The fitting parameters of adsorption kinetics model
材料 | Pseudo-first-order | Pseudo-second-order | ||
---|---|---|---|---|
K1/min-1 | R2 | K2/(g/(mg·min)) | R2 | |
MTNIPs | 0.053 | 0.860 | 0.050 | 0.955 |
MTMIPs | 0.061 | 0.918 | 0.007 | 0.988 |
图5 MTMIPs选择性考察的HPLC图(a);MTMIPs和MTNIPs对芒柄花黄素、染料木素和大豆苷元选择性考察(b)
Fig.5 HPLC diagrams of MTMIPs selectivity study (a); Selection adsorption of formononetin, genistein and daidzein by MTMIPs and MTNIPs (b)
Samples | Regression analysis | Precision | |||||
---|---|---|---|---|---|---|---|
Standard curves | Correlation coefficient | Linear range/(μg/ml) | LOD/(μg/ml) | LOQ/(μg/ml) | Intra-day RSD/% | Inter-day RSD/% | |
daidzein | y=521.8x-66.35 | 0.992 | 5—100 | 0.015 | 0.045 | 0.61 | 1.52 |
formononetin | y=520.5x-202.7 | 0.993 | 5—100 | 0.017 | 0.063 | 0.89 | 1.28 |
genistein | y=481.2x-34.31 | 0.992 | 5—100 | 0.027 | 0.125 | 0.62 | 1.54 |
表3 选择性研究中的方法学考察数据
Table 3 Data of methodological examination in selective research
Samples | Regression analysis | Precision | |||||
---|---|---|---|---|---|---|---|
Standard curves | Correlation coefficient | Linear range/(μg/ml) | LOD/(μg/ml) | LOQ/(μg/ml) | Intra-day RSD/% | Inter-day RSD/% | |
daidzein | y=521.8x-66.35 | 0.992 | 5—100 | 0.015 | 0.045 | 0.61 | 1.52 |
formononetin | y=520.5x-202.7 | 0.993 | 5—100 | 0.017 | 0.063 | 0.89 | 1.28 |
genistein | y=481.2x-34.31 | 0.992 | 5—100 | 0.027 | 0.125 | 0.62 | 1.54 |
图6 MTMIPs实际应用HPLC图:(1)芒柄花黄素母液HPLC图;(2)洗脱液的HPLC图;(3)粗提物经萃取后的HPLC图;(4)粗提物的HPLC图
Fig.6 HPLC diagrams of the MTMIPs practical application: (1) HPLC diagram of the formononetin mother solution; (2) The HPLC diagram of MTMIPs eluents; (3) HPLC diagram of crude extracts after MTMIPs absorbed; (4) HPLC diagram of crude extracts from Trifolium pratense L.
1 | 王晓燕. 红车轴草异黄酮提取、分离纯化及其抗氧化活性的研究[D]. 西安: 西北大学, 2013. |
Wang X Y. The effect on extraction, isolation and purification and antioxidant activity of the isoflavones in Trifolium pratense L[D]. Xi'an: Northwest University, 2013. | |
2 | Mu H, Bai Y H, Wang S T, et al. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover)[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2009, 16(4): 314-319. |
3 | Brad K, Zhang Y, Gao J. Extraction and purification of formonometin from Trifolium pratense L: physicochemical properties of its complex with lecithin[J]. Tropical Journal of Pharmaceutical Research, 2017, 16(8): 1757-1764. |
4 | Snauwaert C, Vos M D, Looze D D. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo[J]. Hormone and Metabolic Research, 2011, 43(10): 681-686. |
5 | Park J, Kim S H, Cho D, et al. Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity[J]. Insect Science, 2005, 116(1): 71-81. |
6 | Gao D, Wang D D, Fu Q F, et al. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin[J]. Talanta, 2018, 178: 299-307. |
7 | Pedrazza G P R, Morais C B, Dettenborn G R, et al. Anti-inflammatory activity and chemical analysis of extracts from Trifolium riograndense[J]. Brazilian Journal of Pharmacognosy, 2017, 27(3): 334-338. |
8 | Ganzera M. Supercritical fluid chromatography for the separation of isoflavones[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107: 364-369. |
9 | Renda G, Yalcin F N, Nemutlu E, et al. Comparative assessment of dermal wound healing potentials of various Trifolium L. extracts and determination of their isoflavone contents as potential active ingredients[J]. Journal of Ethnopharmacology, 2013, 148(2): 423-432. |
10 | Zgorka G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species[J]. Talanta, 2009, 79(1): 46-53. |
11 | Zhang Y, Liu C, Pan Y, et al. Ultrasound-assisted dynamic extraction coupled with parallel countercurrent chromatography for simultaneous extraction, purification, and isolation of phytochemicals: application to isoflavones from red clover[J]. Analytical and Bioanalytical Chemistry, 2015, 407(16): 4597-4606. |
12 | Visnevschi-Necrasov T, Cunha S C, Nunes Eugénia, et al. Optimization of matrix solid-phase dispersion extraction method for the analysis of isoflavones in Trifolium pratense[J]. Journal of Chromatography A, 2009, 1216(18): 3720-3724. |
13 | Chrzanowska A M, Poliwoda A, Wieczorek P P. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples[J]. Journal of Chromatography A, 2015, 1392(Complete): 1-9. |
14 | Feng F, Zheng J, Qin P, et al. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites[J]. Talanta, 2017, 167(Complete): 94-102. |
15 | Li W, Zhang Q, Wang Y, et al. Controllably prepared aptamer-molecularly imprinted polymer hybrid for high-specificity and high-affinity recognition of target proteins[J]. Analytical Chemistry, 2019, 91(7): 4831-4837. |
16 | Liu Y L, Liu R, Qin Y, et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat[J]. Analytical Chemistry, 2018, 90(21): 13081-13087. |
17 | Xie J, Xiong J, Ding L S, et al. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation[J]. Journal of Chromatography A, 2018, 1576: 10-18. |
18 | Zhang Y, Liu D H, Peng J, et al. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis[J]. Talanta, 2019, 209: 120555. |
19 | Zhou Y, Liu H C, Li J M, et al. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples[J]. Journal of Chromatography A, 2019, 1613: 460684. |
20 | Li H J, Wang Y, Li Y, et al. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2, 6-dichlorophenol detection based on surface-enhanced Raman scattering[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2019, 228: 117784. |
21 | Kazemifard N, Ensafi A A, Rezaei B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices[J]. Food Chemistry, 2020, 310: 125812. |
22 | Liu Y, Chen P, Zheng S, et al. Novel fluorescent sensor using molecularly imprinted silica microsphere coated CdSe@CdS quantum dots and its application in the detection of 2, 4, 6‐trichlorophenol from environmental water samples[J]. Luminescence, 2019, 34(7): 680-688. |
23 | Piletsky S, Canfarotta F, Poma A, et al. Molecularly imprinted polymers for cell recognition[J]. Trends of Biotechnology, 2020, 38(4): 368-387. |
24 | Wang X L, Yao H F, Li X Y, et al. pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization[J]. RSC Advances, 2016, 6(96): 94038-94047. |
25 | Tuwahatu C A, Yeung C C, Lam Y W, et al. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2018, 287: 24-34. |
26 | Abdollahi E, Khalafi-Nezhad A, Mohammadi A, et al. Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system[J]. Polymer, 2018, 143: 245-257. |
27 | Xu S, Lu H, Zheng X, et al. Stimuli-responsive molecularly imprinted polymers: versatile functional materials[J]. Journal of Materials Chemistry C, 2013, 1(29): 4406-4422. |
28 | Wu X, Wang X, Lu W, et al. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A[J]. Journal of Chromatography A, 2016, 1435: 30-38. |
29 | Wang J, Pan J, Yin Y, et al. Thermo-responsive and magnetic molecularly imprinted Fe3O4@carbon nanospheres for selective adsorption and controlled release of 2, 4, 5-trichlorophenol[J]. Journal of Industrial & Engineering Chemistry, 2015, 25: 321-328. |
30 | Zhu L, Cao Y, Ni X, et al. Facile and versatile strategy to prepare magnetic molecularly imprinted particles based on the coassembly of magnetic nanoparticles and amphiphilic random copolymers[J]. Journal of Separation Science, 2018, 41(2): 578-581. |
31 | Wu Y, Yan M, Lu J, et al. Facile bio-functionalized design of thermally responsive molecularly imprinted composite membrane for temperature-dependent recognition and separation applications[J]. Chemical Engineering Journal, 2017, 309: 98-107. |
32 | Hashemi-Moghaddam H, Maddah S. Coating of optical fiber with a smart thermosensitive polymer for the separation of phthalate esters by solid-phase microextraction[J]. Journal of Separation Science, 2018, 41(4): 886-892. |
33 | Liu X, Zhou T, Du Z, et al. Recognition ability of temperature responsive molecularly imprinted polymer hydrogels[J]. Soft Matter, 2011, 7(5): 1986-1993. |
34 | Zhang Y, Kuang M, Zhang L, et al. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles[J]. Analytical Chemistry, 2013, 85(11): 5535-5541. |
35 | Shi S, Fan D, Xiang H, et al. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices[J]. Food Chemistry, 2017, 237: 198-204. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[12] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[13] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||