化工学报 ›› 2021, Vol. 72 ›› Issue (2): 681-708.DOI: 10.11949/0438-1157.20200631
收稿日期:
2020-05-20
修回日期:
2020-07-15
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
王涛
作者简介:
刘庆(1996—),男,博士研究生,基金资助:
LIU Qing(),DAI Xiaofeng,ZHANG Teng,SHI Hongbin,ZHANG Yabing,WANG Tao()
Received:
2020-05-20
Revised:
2020-07-15
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Tao
摘要:
随着电子器件向集成化、柔性化的发展,传统锡铅焊料、氧化铟锡薄膜等电子材料已经不能满足导电、导热、柔性等性能的要求。金属纳米线具备优异的光电性能和独特的一维结构,以其为关键成分的新材料成为传统电子材料最具潜力的替代品。金属纳米线产业链的发展涉及原料、设备、工艺与应用多方面,但关键技术在于金属纳米线的大规模、低成本、绿色高效制备。综述了近年来金属纳米线的主要制备方法,包括物理气相沉积法、化学气相沉积法、模板法、溶剂热法以及多元醇法,并对金属纳米线在导电胶、透明导电薄膜、热界面材料等电子材料的最新应用进展进行了概述。
中图分类号:
刘庆, 戴小凤, 张腾, 施洪斌, 张亚兵, 王涛. 金属纳米线的制备及其在电子材料中的应用[J]. 化工学报, 2021, 72(2): 681-708.
LIU Qing, DAI Xiaofeng, ZHANG Teng, SHI Hongbin, ZHANG Yabing, WANG Tao. Preparation and applications in electronic materials of metallic nanowires[J]. CIESC Journal, 2021, 72(2): 681-708.
1 | Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes[J]. Small, 2015, 11(36): 4737-4744. |
2 | Lian G, Tuan C C, Li L, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Chemistry of Materials, 2016, 28(17): 6096-6104. |
3 | Wang J L, Hassan M, Liu J W, et al. Nanowire assemblies for flexible electronic devices: recent advances and perspectives[J]. Advanced Materials, 2018, 30(48): 1803430. |
4 | Bhanushali S, Ghosh P C, Simon G P, et al. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials[J]. Advanced Materials Interfaces, 2017, 4(17): 1700387. |
5 | Barako M T, Isaacson S G, Lian F, et al. Dense vertically aligned copper nanowire composites as high performance thermal interface materials[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42067-42074. |
6 | Barako M T, Roy-Panzer S, English T S, et al. Thermal conduction in vertically aligned copper nanowire arrays and composites[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19251-19259. |
7 | Jung J, Lee H, Ha I, et al. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44609-44616. |
8 | Huang W R, He Z, Wang J L, et al. Mass production of nanowire-nylon flexible transparent smart windows for PM2.5 capture[J]. iScience, 2019, 12: 333-341. |
9 | An B W, Heo S, Ji S, et al. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature[J]. Nature Communications, 2018, 9(1): 2458. |
10 | Zhang Z, Li W, Wang X, et al. Low effective content of reduced graphene oxide/silver nanowire hybrids in epoxy composites with enhanced conductive properties[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7384-7392. |
11 | 周良杰, 黄扬, 吴丰顺, 等. 电子封装用纳米导电胶的研究进展[J]. 电子工艺技术, 2013, 34(1): 1-5+21. |
Zhou L J, Huang Y, Wu F S, et al. Research and progress of nano-ECAs for electronic packaging[J]. Electronics Process Technology, 2013, 34(1): 1-5+21. | |
12 | 彭英才, 王英龙. 一维纳米电子技术[M]. 北京: 化学工业出版社, 2016: 9-12. |
Peng Y C, Wang Y L. One Dimensional Nanoelectronic Technology[M]. Beijing: Chemical Industry Press, 2016: 9-12. | |
13 | Kast M, Schroeder P, Hyun Y J, et al. Synthesis of single-crystalline Zn metal nanowires utilizing cold-wall physical vapor deposition[J]. Nano Letters, 2007, 7(8): 2540-2544. |
14 | 陈嘉君, 王涵, 宋西平. 物理气相沉积法制备镁纳米线的工艺及机理[J]. 材料热处理学报, 2016, 37(S1): 1-4. |
Chen J J, Wang H, Song X P. Process and mechanism of magnesium nanowires prepared by physical vapor deposition[J]. Transactions of Materials and Heat Treatment, 2016, 37(S1): 1-4. | |
15 | Adelung R, Ernst F, Scott A, et al. Self‐assembled nanowire networks by deposition of copper onto layered‐crystal surfaces[J]. Advanced Materials, 2002, 14(15): 1056-1061. |
16 | Yeon J, Lee Y J, Yoo D E, et al. High throughput ultralong (20 cm) nanowire fabrication using a wafer-scale nanograting template[J]. Nano Letters, 2013, 13(9): 3978-3984. |
17 | Brun C, Elchinger P H, Nonglaton G, et al. Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles[J]. Small, 2017, 13(33): 1700956. |
18 | Suzuki M, Minamitake H, Kita R, et al. Growth of nanowires by high-temperature glancing angle deposition[J]. Japanese Journal of Applied Physics, 2013, 52(11R): 110116. |
19 | Hu J, Zhang F, Wang J, et al. Synthesis of single-crystalline Fe nanowires using catalyst-assisted chemical vapor deposition[J]. Materials Letters, 2015, 160: 529-532. |
20 | Chan K T, Kan J J, Doran C, et al. Oriented growth of single-crystal Ni nanowires onto amorphous SiO2[J]. Nano Letters, 2010, 10(12): 5070-5075. |
21 | Chan K T, Kan J J, Doran C, et al. Controlled growth behavior of chemical vapor deposited Ni nanostructures[J]. Philosophical Magazine, 2012, 92(17): 2173-2186. |
22 | Choi H, Park S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition[J]. Journal of the American Chemical Society, 2004, 126(20): 6248-6249. |
23 | Kim S I, Yoon H, Lee H, et al. Epitaxy-driven vertical growth of single-crystalline cobalt nanowire arrays by chemical vapor deposition[J]. Journal of Materials Chemistry C, 2015, 3(1): 100-106. |
24 | Wang S, Tian Y, Ding S, et al. Rapid synthesis of long silver nanowires by controlling concentration of Cu2+ ions[J]. Materials Letters, 2016, 172: 175-178. |
25 | Cuya Huaman J L, Urushizaki I, Jeyadevan B. Large-scale Cu nanowire synthesis by PVP-ethylene glycol route[J]. Journal of Nanomaterials, 2018, 2018: 1-10. |
26 | Ye S, Rathmell A R, Stewart I E, et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films[J]. Chemical Communications, 2014, 50(20): 2562-2564. |
27 | Zhao L, Yu S, Li X, et al. High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110067. |
28 | Chu H C, Tuan H Y. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector[J]. Journal of Power Sources, 2017, 346: 40-48. |
29 | 朱欣欣. 有序铜纳米线阵列的制备及其光吸收性能研究[D]. 绵阳: 西南科技大学, 2018. |
Zhu X X. A study on fabrication and optical absorption property of ordered copper nanowires arrays[D]. Mianyang: Southwest University of Science and Technology, 2018. | |
30 | Ganapathi A, Swaminathan P, Neelakantan L. Anodic aluminum oxide template assisted synthesis of copper nanowires using a galvanic displacement process for electrochemical denitrification[J]. ACS Applied Nano Materials, 2019, 2(9): 5981-5988. |
31 | Guiliani J, Cadena J, Monton C. Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates[J]. Nanotechnology, 2018, 29(7): 075301. |
32 | Wen L, Xu R, Mi Y, et al. Multiple nanostructures based on anodized aluminium oxide templates[J]. Nature Nanotechnology, 2017, 12(3): 244-250. |
33 | Spain E, McCooey A, Joyce K, et al. Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA[J]. Sensors and Actuators B: Chemical, 2015, 215: 159-165. |
34 | Graves J E, Bowker M E A, Summer A, et al. A new procedure for the template synthesis of metal nanowires[J]. Electrochemistry Communications, 2018, 87: 58-62. |
35 | Yang C M, Sheu H S, Chao K J. Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48[J]. Advanced Functional Materials, 2002, 12(2): 143-148. |
36 | Zhang D, Wang R, Wen M, et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes[J]. Journal of the American Chemical Society, 2012, 134(35): 14283-14286. |
37 | Zhang D, Liu P, Xiao S, et al. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H2 production[J]. Nanoscale, 2016, 8(14): 7749-7754. |
38 | Drisko G L, Gatel C, Fazzini P F, et al. Air-stable anisotropic monocrystalline nickel nanowires characterized using electron holography[J]. Nano Letters, 2018, 18(3): 1733-1738. |
39 | Juárez J, Cambón A, Goy-López S, et al. Obtention of metallic nanowires by protein biotemplating and their catalytic application[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2680-2687. |
40 | Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature, 1998, 391(6669): 775-778. |
41 | Knez M, Bittner A M, Boes F, et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires[J]. Nano Letters, 2003, 3(8): 1079-1082. |
42 | Tsukamoto R, Muraoka M, Seki M, et al. Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate[J]. Chemistry of Materials, 2007, 19(10): 2389-2391. |
43 | Zhou K, Zhang J, Wang Q. Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars[J]. Small, 2015, 11(21): 2505-2509. |
44 | Lee S Y, Lim J S, Harris M T. Synthesis and application of virus-based hybrid nanomaterials[J]. Biotechnology and Bioengineering, 2012, 109(1): 16-30. |
45 | Adigun O O, Retzlaff-Roberts E L, Novikova G, et al. BSMV as a biotemplate for palladium nanomaterial synthesis[J]. Langmuir, 2017, 33(7): 1716-1724. |
46 | Zheng Y, Chen N, Wang C, et al. Oleylamine-mediated hydrothermal growth of millimeter-long Cu nanowires and their electrocatalytic activity for reduction of nitrate[J]. Nanomaterials, 2018, 8(4): 192. |
47 | Zhang Y, Guo J, Xu D, et al. One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25465-25473. |
48 | Kang C, Yang S, Tan M, et al. Purification of copper nanowires to prepare flexible transparent conductive films with high performance[J]. ACS Applied Nano Materials, 2018, 1(7): 3155-3163. |
49 | Bahiru Gebeyehu M, Fita Chala T, Chang S Y, et al. Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method[J]. RSC Advances, 2017, 7(26): 16139-16148. |
50 | Lai J, Niu W, Luque R, et al. Solvothermal synthesis of metal nanocrystals and their applications[J]. Nano Today, 2015, 10(2): 240-267. |
51 | Bari B, Lee J, Jang T, et al. Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes[J]. Journal of Materials Chemistry A, 2016, 4(29): 11365-11371. |
52 | Jang H W, Kim Y H, Lee K W, et al. Research update: synthesis of sub-15-nm diameter silver nanowires through a water-based hydrothermal method: fabrication of low-haze 2D conductive films[J]. APL Materials, 2017, 5(8): 080701. |
53 | Vijila C V M, Rahman K K A, Parvathy N S, et al. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application [C]// Chitra R, Bhattacharya S, Sahoo N K. Dae Solid State Physics Symposium 2015. Maryland, American: American Institute of Physics, 2016: 080073. |
54 | Yang Z, Qian H, Chen H, et al. One-pot hydrothermal synthesis of silver nanowires via citrate reduction[J]. Journal of Colloid and Interface Science, 2010, 352(2): 285-291. |
55 | Duong T H, Kim H C. Extremely simple and rapid fabrication of flexible transparent electrodes using ultralong copper nanowires[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 3076-3082. |
56 | Wang R, Ruan H. Synthesis of copper nanowires and its application to flexible transparent electrode[J]. Journal of Alloys and Compounds, 2016, 656: 936-943. |
57 | Ruan H, Wang R, Luo Y, et al. Study on synthesis and growth mechanism of copper nanowires via a facile oleylamine-mediated process[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(9): 9405-9409. |
58 | Wang W, Li G, Zhang Z. A facile templateless, surfactantless hydrothermal route to ultralong copper submicron wires[J]. Journal of Crystal Growth, 2007, 299(1): 158-164. |
59 | Sinha A K, Basu M, Sarkar S, et al. Electrostatic field force directed gold nanowires from anion exchange resin[J]. Langmuir, 2010, 26(22): 17419-17426. |
60 | Chen G, Xu C, Huang X, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15(5): 564-569. |
61 | Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods[J]. Journal of the American Chemical Society, 2009, 131(13): 4602-4603. |
62 | Lim M B, Hanson J L, Vandsburger L, et al. Copper- and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires[J]. Journal of Materials Chemistry A, 2018, 6(14): 5644-5651. |
63 | Lu N, Chen W, Fang G, et al. 5-fold twinned nanowires and single twinned right bipyramids of Pd: utilizing small organic molecules to tune the etching degree of O2/halides[J]. Chemistry of Materials, 2014, 26(7): 2453-2459. |
64 | Bao J, Wang J X, Zeng X F, et al. Large-scale synthesis of uniform silver nanowires by high-gravity technology for flexible transparent conductive electrodes[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20630-20638. |
65 | Huo D, Kim M J, Lyu Z, et al. One-dimensional metal nanostructures: from colloidal syntheses to applications[J]. Chemical Reviews, 2019, 119(15): 8972-9073. |
66 | Wang C, Cheng B, Zhang H, et al. Probing the seeded protocol for high-concentration preparation of silver nanowires[J]. Nano Research, 2016, 9(5): 1532-1542. |
67 | Kuo C L, Hwang K C. Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism[J]. Langmuir, 2012, 28(8): 3722-3729. |
68 | Sun Y. Silver nanowires-unique templates for functional nanostructures[J]. Nanoscale, 2010, 2(9): 1626-1642. |
69 | Sim H, Bok S, Kim B, et al. Organic-stabilizer-free polyol synthesis of silver nanowires for electrode applications[J]. Angewandte Chemie International Edition, 2016, 55(39): 11814-11818. |
70 | Xiong Y, Cai H, Wiley B J, et al. Synthesis and mechanistic study of palladium nanobars and nanorods[J]. Journal of the American Chemical Society, 2007, 129(12): 3665-3675. |
71 | Yin Z, Song S K, Cho S, et al. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach[J]. Nano Research, 2017, 10(9): 3077-3091. |
72 | Chang Y, Lye M L, Zeng H C. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir, 2005, 21(9): 3746-3748. |
73 | Darmakkolla S R, Ghobadi M, Lampert L, et al. Morphology-controlled copper nanowire synthesis and magnetic field assisted self-assembly[J]. Nanoscale, 2019, 11(6): 2679-2686. |
74 | Kim M J, Alvarez S, Yan T, et al. Modulating the growth rate, aspect ratio, and yield of copper nanowires with alkylamines[J]. Chemistry of Materials, 2018, 30(8): 2809-2818. |
75 | Ye S, Stewart I E, Chen Z, et al. How copper nanowires grow and how to control their properties[J]. Accounts of Chemical Research, 2016, 49(3): 442-451. |
76 | Borchert J W, Stewart I E, Ye S, et al. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors[J]. Nanoscale, 2015, 7(34): 14496-14504. |
77 | Cui F, Dou L, Yang Q, et al. Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires[J]. Journal of the American Chemical Society, 2017, 139(8): 3027-3032. |
78 | Hwang C, An J, Choi B D, et al. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode[J]. Journal of Materials Chemistry C, 2016, 4(7): 1441-1447. |
79 | Zhu C, Peng H C, Zeng J, et al. Facile synthesis of gold wavy nanowires and investigation of their growth mechanism[J]. Journal of the American Chemical Society, 2012, 134(50): 20234-20237. |
80 | Kim F, Sohn K, Wu J, et al. Chemical synthesis of gold nanowires in acidic solutions[J]. Journal of the American Chemical Society, 2008, 130(44): 14442-14443. |
81 | Wang M, Kong T, Jing X, et al. Fabrication of Au nanowire/Pichiapastoris cell composites with hexadecyltrimethylammonium bromides as a platform for SERS detection: a microorganism-mediated approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(51): 16651-16659. |
82 | Tang Y, Edelmann R E, Zou S. Length tunable penta-twinned palladium nanorods: seedless synthesis and electrooxidation of formic acid[J]. Nanoscale, 2014, 6(11): 5630-5633. |
83 | Koo J, Kwon S, Kim N R, et al. Ethylenediamine-enhanced oxidation resistivity of a copper surface during water-based copper nanowire synthesis[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3334-3340. |
84 | Rathmell A R, Wiley B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates[J]. Advanced Materials, 2011, 23(41): 4798-4803. |
85 | Jin M, He G, Zhang H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J]. Angewandte Chemie International Edition, 2011, 50(45): 10560-10564. |
86 | Wang X, Wang R, Shi L, et al. Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes[J]. Journal of Materials Chemistry C, 2018, 6(5): 1048-1056. |
87 | Wang X, Wang R, Zhai H, et al. “Leaf vein” inspired structural design of Cu nanowire electrodes for the optimization of organic solar cells[J]. Journal of Materials Chemistry C, 2018, 6(21): 5738-5745. |
88 | Ye E, Zhang S Y, Liu S, et al. Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange[J]. Chemistry-A European Journal, 2011, 17(11): 3074-3077. |
89 | Xiao Q, Cai M, Balogh M P, et al. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts[J]. Nano Research, 2012, 5(3): 145-151. |
90 | Wang Y, Choi S I, Zhao X, et al. Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation[J]. Advanced Functional Materials, 2014, 24(1): 131-139. |
91 | Hong W, Wang J, Wang E. Bromide ion mediated synthesis of carbon supported ultrathin palladium nanowires with enhanced catalytic activity toward formic acid/ethanol electrooxidation[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3226-3230. |
92 | Meng H, Zhan Y, Zeng D, et al. Factors influencing the growth of Pt nanowires via chemical self-assembly and their fuel cell performance[J]. Small, 2015, 11(27): 3377-3386. |
93 | Zhang Y, Nishi N, Amano K, et al. One-dimensional Pt nanofibers formed by the redox reaction at the ionic liquid/water interface[J]. Electrochimica Acta, 2018, 282: 886-891. |
94 | Kundu S, Huitink D, Liang H. Formation and catalytic application of electrically conductive Pt nanowires[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7700-7709. |
95 | Dertli E, Coskun S, Esenturk E N. Gold nanowires with high aspect ratio and morphological purity: synthesis, characterization, and evaluation of parameters[J]. Journal of Materials Research, 2013, 28(2): 250-260. |
96 | El Kurdi R, Patra D. The role of OH- in the formation of highly selective gold nanowires at extreme pH: multi-fold enhancement in the rate of the catalytic reduction reaction by gold nanowires[J]. Physical Chemistry Chemical Physics, 2017, 19(7): 5077-5090. |
97 | Hu J Q, Chen Q, Xie Z X, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Advanced Functional Materials, 2004, 14(2): 183-189. |
98 | Huang H, Ruditskiy A, Choi S I, et al. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 31203-31212. |
99 | Halder A, Ravishankar N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment[J]. Advanced Materials, 2007, 19(14): 1854-1858. |
100 | Xia B Y, Wu H B, Yan Y, et al. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity[J]. Journal of the American Chemical Society, 2013, 135(25): 9480-9485. |
101 | Xie D G, Nie Z Y, Shinzato S, et al. Controlled growth of single-crystalline metal nanowires via thermomigration across a nanoscale junction[J]. Nature Communications, 2019, 10(1): 4478. |
102 | Chen Y, Wang Y, Zhu S, et al. One-step, catalyst-free, scalable in situ synthesis of single-crystal aluminum nanowires in confined graphene space[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6009-6014. |
103 | Wu H, Wu X, Liu J, et al. Development of a novel isotropic conductive adhesive filled with silver nanowires[J]. Journal of Composite Materials, 2006, 40(21): 1961-1969. |
104 | Gao H, Liu L, Luo Y F, et al. Effect of curing procedures on the electrical properties of epoxy-based isotropic conductive adhesives[J]. International Journal of Polymeric Materials, 2011, 60(6): 409-427. |
105 | Tao Y, Chang Y, Tao Y, et al. Self-healing isotropical conductive adhesives filled with Ag nanowires[J]. Materials Chemistry and Physics, 2014, 148(3): 778-782. |
106 | Li Y, Wong C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications[J]. Materials Science and Engineering: R: Reports, 2006, 51(1/2/3): 1-35. |
107 | Jing J J, Xie J, Chen G Y, et al. Preparation of nickel-silver core-shell nanoparticles by liquid-phase reduction for use in conductive paste[J]. Journal of Experimental Nanoscience, 2015, 10(17): 1347-1356. |
108 | Yim M J, Li Y, Moon K S, et al. Review of recent advances in electrically conductive adhesive materials and technologies in electronic packaging[J]. Journal of Adhesion Science and Technology, 2008, 22(14): 1593-1630. |
109 | 梁云, 李世鸿, 金勿毁, 等. 导电胶的研究进展[J]. 贵金属, 2015, 36(1): 75-80. |
Liang Y, Li S H, Jin W H, et al. Research progress of conductive adhesives[J]. Precious Metals, 2015, 36(1): 75-80. | |
110 | 章炜, 姚建吉, 詹科, 等. 导电胶研究进展[J]. 科技导报, 2018, 36(10): 56-65. |
Zhang W, Yao J J, Zhan K, et al. Research progress of conductive adhesives[J]. Science & Technology Review, 2018, 36(10): 56-65. | |
111 | Chen C, Wang L, Li R, et al. Effect of silver nanowires on electrical conductance of system composed of silver particles[J]. Journal of Materials Science, 2007, 42(9): 3172-3176. |
112 | Wang Y H, Xiong N N, Xie H, et al. New insights into silver nanowires filled electrically conductive adhesives[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(2): 621-629. |
113 | Wang Y H, Huang A, Xie H, et al. Isotropical conductive adhesives with very-long silver nanowires as conductive fillers[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(1): 10-17. |
114 | Li D, Liu X, Chen X, et al. A simple strategy towards highly conductive silver nanowire inks for screen printed flexible transparent conductive films and wearable energy storage devices[J]. Advanced Materials Technologies, 2019, 4(8): 1900196. |
115 | Araki T, Jiu J, Nogi M, et al. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method[J]. Nano Research, 2014, 7(2): 236-245. |
116 | Wang Q, Zhang S, Liu G, et al. The mixture of silver nanowires and nanosilver-coated copper micronflakes for electrically conductive adhesives to achieve high electrical conductivity with low percolation threshold[J]. Journal of Alloys and Compounds, 2020, 820: 153184. |
117 | Tao Y, Xia Y, Wang H, et al. Novel isotropical conductive adhesives for electronic packaging application[J]. IEEE Transactions on Advanced Packaging, 2009, 32(3): 589-592. |
118 | Li X S, Xiang X Z, Wang L, et al. Conductivity and mechanical properties of conductive adhesive with silver nanowires[J]. Rare Metals, 2018, 37(3): 191-195. |
119 | 陈珍珍. 一种铜纳米线导电胶及其制备方法: 103911089A[P]. 2014-07-09. |
Chen Z Z. A copper nanowire conductive adhesive and its preparation method: 103911089A[P]. 2014-07-09. | |
120 | Kim M J, Flowers P F, Stewart I E, et al. Ethylenediamine promotes Cu nanowire growth by inhibiting oxidation of Cu(111)[J]. Journal of the American Chemical Society, 2017, 139(1): 277-284. |
121 | Na W, Lee J, Jun J, et al. Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 358-363. |
122 | Ye S, Rathmell A R, Chen Z, et al. Metal nanowire networks: the next generation of transparent conductors[J]. Advanced Materials, 2014, 26(39): 6670-6687. |
123 | Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 2014, 26(33): 5808-5814. |
124 | Wu S, Zou M, Li Z, et al. Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding[J]. Small, 2018, 14(23): 1800634. |
125 | Meschi Amoli B, Hu A, Zhou N Y, et al. Recent progresses on hybrid micro-nano filler systems for electrically conductive adhesives (ECAs) applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 4730-4745. |
126 | Dong X, Wei Y, Chen S, et al. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge[J]. Composites Science and Technology, 2018, 155: 108-116. |
127 | Ma H, Zeng J, Harrington S, et al. Hydrothermal fabrication of silver nanowires-silver nanoparticles-graphene nanosheets composites in enhancing electrical conductive performance of electrically conductive adhesives[J]. Nanomaterials, 2016, 6(6): 119. |
128 | 吴海平, 吴希俊, 刘金芳, 等. 填充银纳米线各向同性导电胶的性能[J]. 复合材料学报, 2006, 23(5): 24-28. |
Wu H P, Wu X J, Liu J F, et al. Isotropical conductive adhesives filled with silver nanowires[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 24-28. | |
129 | Cui H W, Jiu J T, Nagao S, et al. Ultra-fast photonic curing of electrically conductive adhesives fabricated from vinyl ester resin and silver micro-flakes for printed electronics[J]. RSC Advances, 2014, 4(31): 15914-15922. |
130 | Zhang R, Moon K S, Lin W, et al. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(10): 2018-2023. |
131 | Yang C, Wong C P, Yuen M M F. Printed electrically conductive composites: conductive filler designs and surface engineering[J]. Journal of Materials Chemistry C, 2013, 1(26): 4052-4069. |
132 | Xie H, Xiong N, Zhao Y, et al. Effect of silver nanowires on the resistivity of electronically conductive adhesives[J]. Rare Metal Materials and Engineering, 2016, 45(10): 2503-2508. |
133 | 李世涛, 乔学亮, 陈建国. 透明导电薄膜的研究现状及应用[J]. 激光与光电子学进展, 2003, 40(7): 53-59. |
Li S T, Qiao X L, Chen J G. Recent research and application in transparent & conducting films[J]. Laser & Optoelectronics Progress, 2003, 40(7): 53-59. | |
134 | Singh R, Singh E, Nalwa H S. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things[J]. RSC Advances, 2017, 7(77): 48597-48630. |
135 | Kim G H, Shin J H, An T, et al. Junction-free flat copper nanofiber network-based transparent heater with high transparency, high conductivity, and high temperature[J]. Scientific Reports, 2018, 8(1): 13581. |
136 | Cho J H, Kang D J, Jang N S, et al. Metal nanowire-coated metal woven mesh for high-performance stretchable transparent electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40905-40913. |
137 | Hsu P C, Wang S, Wu H, et al. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires[J]. Nature Communications, 2013, 4: 2522. |
138 | Deng B, Hsu P C, Chen G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes[J]. Nano Letters, 2015, 15(6): 4206-4213. |
139 | Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes[J]. Advanced Functional Materials, 2012, 22(2): 421-428. |
140 | Wang H, Liao S, Bai X, et al. Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32661-32666. |
141 | Jin Y, Wang K, Cheng Y, et al. Removable large-area ultrasmooth silver nanowire transparent composite electrode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4733-4741. |
142 | Wen L, Sahu B B, Kim H R, et al. Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature[J]. Applied Surface Science, 2019, 473: 649-656. |
143 | Wang Z, Chen C, Wu K, et al. Transparent conductive oxides and their applications in near infrared plasmonics[J]. Physica Status Solidi, 2019, 216(5): 1700794. |
144 | Lin T C, Huang W C, Tsai F C. The electro-optical characteristics of AZO/Mo/AZO transparent conductive film[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 3685-3690. |
145 | Du Y, Xu J, Paul B, et al. Flexible thermoelectric materials and devices[J]. Applied Materials Today, 2018, 12: 366-388. |
146 | Chen D, Pei Q. Electronic muscles and skins: a review of soft sensors and actuators[J]. Chemical Reviews, 2017, 117(17): 11239-11268. |
147 | Lee D, Lee H, Ahn Y, et al. High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure[J]. Carbon, 2015, 81: 439-446. |
148 | Sung H, Ahn N, Jang M S, et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency[J]. Advanced Energy Materials, 2016, 6(3): 1501873. |
149 | 唐燕. 基于金属纳米线柔性复合透明电极的构筑及性能研究[D]. 重庆: 重庆理工大学, 2019. |
Tang Y. Construction and properties of flexible composite transparent electrodes based on metal nanowires[D]. Chongqing: Chongqing University of Technology, 2019. | |
150 | Gao T, Li Z, Huang P S, et al. Hierarchical graphene/metal grid structures for stable, flexible transparent conductors[J]. ACS Nano, 2015, 9(5): 5440-5446. |
151 | Hsu P C, Kong D, Wang S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes[J]. Journal of the American Chemical Society, 2014, 136(30): 10593-10596. |
152 | Kim D G, Kim J, Jung S B, et al. Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor[J]. Applied Surface Science, 2016, 380: 223-228. |
153 | Yin Z, Lee C, Cho S, et al. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes[J]. Small, 2014, 10(24): 5047-5052. |
154 | Hu L, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963. |
155 | Zhang S, Liu X, Lin T, et al. A method to fabricate uniform silver nanowires transparent electrode using Meyer rod coating and dynamic heating[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18702-18709. |
156 | Zhu Y, Deng Y, Yi P, et al. Flexible transparent electrodes based on silver nanowires: material synthesis, fabrication, performance, and applications[J]. Advanced Materials Technologies, 2019, 4(10): 1900413. |
157 | Carey T, Jones C, Le Moal F, et al. Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19948-19956. |
158 | Chu H C, Chang Y C, Lin Y, et al. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 13009-13017. |
159 | Søndergaard R R, Hösel M, Krebs F C. Roll-to-roll fabrication of large area functional organic materials[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(1): 16-34. |
160 | Xu W, Xu Q, Huang Q, et al. Fabrication of flexible transparent conductive films with silver nanowire by vacuum filtration and PET mold transfer[J]. Journal of Materials Science & Technology, 2016, 32(2): 158-161. |
161 | Kisannagar R R, Jha P, Navalkar A, et al. Fabrication of silver nanowire/polydimethylsiloxane dry electrodes by a vacuum filtration method for electrophysiological signal monitoring[J]. ACS Omega, 2020, 5(18): 10260-10265. |
162 | Feng J, Zhu W, Deng Y, et al. Enhanced antioxidation and thermoelectric properties of the flexible screen-printed Bi2Te3 films through interface modification[J]. ACS Applied Energy Materials, 2019, 2(4): 2828-2836. |
163 | Maisch P, Tam K C, Lucera L, et al. Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells[J]. Organic Electronics, 2016, 38: 139-143. |
164 | Lu H, Lin J, Wu N, et al. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices[J]. Applied Physics Letters, 2015, 106(9): 093302. |
165 | Peng Y, Du B, Xu X, et al. Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes[J]. Applied Physics Express, 2019, 12(6): 066503. |
166 | Pu D, Zhou W, Li Y, et al. Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes[J]. RSC Advances, 2015, 5(122): 100725-100729. |
167 | Lian L, Wang H, Dong D, et al. Highly robust and ultrasmooth copper nanowire electrode by one-step coating for organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(34): 9158-9165. |
168 | 郭星, 陈人杰, 吴锋. 薄膜材料在柔性锂离子电池中的应用[J]. 硅酸盐学报, 2019, 47(10): 1386-1395. |
Guo X, Chen R J, Wu F. Use of thin film materials in flexible lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1386-1395. | |
169 | 王薇. PET基柔性太阳能电池薄膜电极的制备及其光电转换性能的研究[D]. 济南: 山东大学, 2014. |
Wang W. Studies on the preparation and photoelectric properties of thin film electrodes for flexible solar cells on PET substrates[D]. Jinan: Shandong University, 2014. | |
170 | Langley D, Giusti G, Mayousse C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013, 24(45): 452001. |
171 | He W, Ye C. Flexible transparent conductive films on the basis of Ag nanowires: Design and applications: a review[J]. Journal of Materials Science & Technology, 2015, 31(6): 581-588. |
172 | Jiu J, Suganuma K. Metallic nanowires and their application[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(12): 1733-1751. |
173 | Sun Y, Chang M, Meng L, et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes[J]. Nature Electronics, 2019, 2(11): 513-520. |
174 | Liu Y, Zhang J, Gao H, et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters, 2017, 17(2): 1090-1096. |
175 | Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098. |
176 | Yin Z, Chen S, Guan Y, et al. Copper nanowire dispersion through an electrostatic dispersion mechanism for high-performance flexible transparent conducting films and optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5264-5275. |
177 | 赵国庆. 铜基多层膜结构柔性透明电极的制备及应用[D]. 济南: 山东大学, 2016. |
Zhao G Q. The preparation and application of flexible transparent conducting electrodes with copper-based multilayer structure[D]. Jinan: Shandong University, 2016. | |
178 | Kim T, Kang S, Heo J, et al. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices[J]. Advanced Materials, 2018, 30(28): 1800659. |
179 | Petoukhoff C E, Shen Z, Jain M, et al. Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review[J]. Journal of Photonics for Energy, 2015, 5(1): 057002. |
180 | Ajuria J, Ugarte I, Cambarau W, et al. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes[J]. Solar Energy Materials and Solar Cells, 2012, 102: 148-152. |
181 | Gupta R, Rao K D M, Kiruthika S, et al. Visibly transparent heaters[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12559-12575. |
182 | Min S Y, Lee Y, Kim S H, et al. Room-temperature-processable wire-templated nanoelectrodes for flexible and transparent all -wire electronics[J]. ACS Nano, 2017, 11(4): 3681-3689. |
183 | Cai Y, Piao X, Yao X, et al. A facile method to prepare silver nanowire transparent conductive film for heaters[J]. Materials Letters, 2019, 249: 66-69. |
184 | Tigan D, Genlik S P, Imer B, et al. Core/shell copper nanowire networks for transparent thin film heaters[J]. Nanotechnology, 2019, 30(32): 325202. |
185 | Ahn J, Gu J, Hwang B, et al. Printed fabric heater based on Ag nanowire/carbon nanotube composites[J]. Nanotechnology, 2019, 30(45): 455707. |
186 | Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications[J]. Advanced Materials, 2015, 27(32): 4744-4751. |
187 | Khaligh H H, Liew K, Han Y, et al. Silver nanowire transparent electrodes for liquid crystal-based smart windows[J]. Solar Energy Materials and Solar Cells, 2015, 132: 337-341. |
188 | Veeramuthu L, Chen B Y, Tsai C Y, et al. Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire[J]. RSC Advances, 2019, 9(61): 35786-35796. |
189 | Hsu P C, Liu X, Liu C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015, 15(1): 365-371. |
190 | Li S, Tao J, Chu X, et al. Highly accurate particulate matter detection assisted by an air heater based on a silver nanowire film[J]. Nanotechnology, 2019, 30(48): 485204. |
191 | Xu X, Wang R, Nie P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14273-14280. |
192 | Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5(1): 3132. |
193 | You B, Han C J, Kim Y, et al. A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes[J]. Journal of Materials Chemistry A, 2016, 4(27): 10435-10443. |
194 | Duan S, Wang Z, Zhang L, et al. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires[J]. Advanced Materials Technologies, 2018, 3(6): 1800020 |
195 | Kim K K, Hong S, Cho H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks[J]. Nano Letters, 2015, 15(8): 5240-5247. |
196 | Kulkarni M, Gruev V. Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters[J]. Optics Express, 2012, 20(21): 22997-23012. |
197 | Yang X, Lu Y, Duan L, et al. Temperature sensor based on hollow fiber filled with graphene-Ag composite nanowire and liquid[J]. Plasmonics, 2017, 12(6): 1805-1811. |
198 | Wang L, Zhu W, Lu W, et al. Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays[J]. Biosensors & Bioelectronics, 2018, 111: 41-46. |
199 | Thirumalraj B, Zhao D H, Chen S M, et al. Non-enzymatic amperometric detection of hydrogen peroxide in human blood serum samples using a modified silver nanowire electrode[J]. Journal of Colloid and Interface Science, 2016, 470: 117-122. |
200 | Jang J S, Qiao S, Choi S J, et al. Hollow Pd-Ag composite nanowires for fast responding and transparent hydrogen sensors[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39464-39474. |
201 | Guo Z, Jia Y, Song X, et al. Giant gold nanowire vesicle-based colorimetric and SERS dual-mode immunosensor for ultrasensitive detection of vibrio parahemolyticus[J]. Analytical Chemistry, 2018, 90(10): 6124-6130. |
202 | Zhang Y, Xu S, Xiao X, et al. Single gold nanowire electrodes and single Pt@Au nanowire electrodes: electrochemistry and applications[J]. Chemical Communications, 2017, 53(19): 2850-2853. |
203 | Wang D, Xiao X, Xu S, et al. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay[J]. Biosensors & Bioelectronics, 2018, 99: 431-437. |
204 | Eom G, Kim H, Hwang A, et al. Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis[J]. Advanced Functional Materials, 2017, 27(37): 1701832. |
205 | Jamal M, Hasan M, Mathewson A, et al. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate[J]. Biosensors & Bioelectronics, 2013, 40(1): 213-218. |
206 | Kim Y, Kim J W. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor[J]. Applied Surface Science, 2016, 363: 1-6. |
207 | Cho S, Kang S, Pandya A, et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens[J]. ACS Nano, 2017, 11(4): 4346-4357. |
208 | Won P, Park J J, Lee T, et al. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications[J]. Nano Letters, 2019, 19(9): 6087-6096. |
209 | Lee B, Oh J Y, Cho H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution[J]. Nature Communications, 2020, 11(1): 663. |
210 | Liu Y F, Feng J, Bi Y G, et al. Recent developments in flexible organic light-emitting devices[J]. Advanced Materials Technologies, 2019, 4(1): 1800371. |
211 | Liang J, Li L, Tong K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes[J]. ACS Nano, 2014, 8(2): 1590-1600. |
212 | Wang H, Li K, Tao Y, et al. Smooth ZnO:Al-AgNWs composite electrode for flexible organic light-emitting device[J]. Nanoscale Research Letters, 2017, 12: 1-7. |
213 | Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4): 163-174. |
214 | Hansson J, Nilsson T M J, Ye L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews, 2018, 63(1): 22-45. |
215 | Chung D D L. Thermal interface materials[J]. Journal of Electronic Materials, 2020, 49(1): 268-270. |
216 | Razeeb K M, Dalton E, Cross G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63(1): 1-21. |
217 | Tao Z, Wang H, Li X, et al. Expanded graphite/polydimethylsiloxane composites with high thermal conductivity[J]. Journal of Applied Polymer Science, 2017, 134(21): 44843. |
218 | Hong W T, Tai N H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes[J]. Diamond and Related Materials, 2008, 17(7): 1577-1581. |
219 | Marconnet A M, Yamamoto N, Panzer M A, et al. Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density[J]. ACS Nano, 2011, 5(6): 4818-4825. |
220 | Chen J, Huang X, Sun B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano, 2019, 13(1): 337-345. |
221 | Hu J, Huang Y, Yao Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13544-13553. |
222 | Han J, Du G, Gao W, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials, 2019, 29(13): 1900412. |
223 | Kim K, Kim J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content[J]. Composites Part B: Engineering, 2016, 93: 67-74. |
224 | Anithambigai P, Mutharasu D, Huong L H, et al. Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(11): 4814-4821. |
225 | Seshadri I, Esquenazi G L, Borca-Tasciuc T, et al. Multifold increases in thermal conductivity of polymer nanocomposites through microwave welding of metal nanowire fillers[J]. Advanced Materials Interfaces, 2015, 2(15): 1500186. |
226 | Balachander N, Seshadri I, Mehta R J, et al. Nanowire-filled polymer composites with ultrahigh thermal conductivity[J]. Applied Physics Letters, 2013, 102(9): 093117. |
227 | Wang S, Cheng Y, Wang R, et al. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6481-6486. |
228 | An D, Cheng S, Xi S, et al. Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity[J]. Chemical Engineering Journal, 2020, 383: 123151. |
229 | Xu J, Munari A, Dalton E, et al. Silver nanowire array-polymer composite as thermal interface material[J]. Journal of Applied Physics, 2009, 106(12): 124310. |
230 | Ahn K, Kim K, Kim J. Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire[J]. Polymer, 2015, 76: 313-320. |
231 | Kim K, Ahn K, Ju H, et al. Improvement of insulating and thermal properties of SiO2-coated copper nanowire composites[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2713-2720. |
232 | Li M, Tang C, Zhang L, et al. A thermally conductive epoxy polymer composites with hybrid fillers of copper nanowires and reduced graphene oxide[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15694-15700. |
233 | Gong W, Li P, Zhang Y, et al. Ultracompliant heterogeneous copper-tin nanowire arrays making a supersolder[J]. Nano Letters, 2018, 18(6): 3586-3592. |
234 | Cao L, Zhu W, Luo B, et al. Construction of core-shell nanowire arrays in a Cu-Cu2O film electrode for high efficiency in heat dissipation[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3836-3846. |
235 | Cruz M A, Ye S, Kim M J, et al. Multigram synthesis of Cu-Ag core-shell nanowires enables the production of a highly conductive polymer filament for 3D printing electronics[J]. Particle & Particle Systems Characterization, 2018, 35(5): 1700385. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[10] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[11] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[12] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[13] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[14] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[15] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||