1 |
Deng J, Iñiguez J A, Liu C. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2012, 2(5): 846-856.
|
2 |
Rosca V, Duca M, de Groot M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6):2209-2244.
|
3 |
Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.
|
4 |
Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500.
|
5 |
Suryanto B H R, Du H L, Wang D B, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296.
|
6 |
Guo C X, Ran J R, Vasileff A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy and Environmental Science, 2018, 11(1): 45-56.
|
7 |
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564.
|
8 |
Egill S, Thomas B, Sigrídur G, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2011, 14(3): 1235-1245.
|
9 |
Wang Y, Li Y F. PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction[J]. Journal of the American Chemical Society, 2018, 40(140): 12732-12735
|
10 |
Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218-230.
|
11 |
Sun Y F, Gao S, Lei F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636.
|
12 |
Hong X, Chan K, Tsai C, et al. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction[J]. ACS Catalysis, 2016, 6(7): 4428-4437.
|
13 |
Chou S S, Sai N, Lu P, et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide[J]. Nature Communications, 2015, 6(10): 8311-8311.
|
14 |
Gong Q F, Ding P, Xu M Q, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1): 2807.
|
15 |
Li L Q, Tang C, Xia B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908.
|
16 |
Li X H, Li T S, Ma Y J, et al. Boosted electrocatalytic N2 reduction to NH3 by defect‐rich MoS2 nanoflower[J]. Advanced Energy Materials, 2018, 8(30):1801357.
|
17 |
Shi M M, Bao D, Li S J, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21):1800124.
|
18 |
Du Y Q, Jiang C, Xia W, et al. Electrocatalytic reduction of N2 and nitrogen-incorporation process on dopant-free defect graphene[J]. Journal of Materials Chemistry A, 2020, 8(1): 55-61.
|
19 |
Yu X, Han P, Wei Z, et al. Boron-doped graphene for electrocatalytic N2 reduction[J]. Joule, 2018, 2(8): 1610-1622.
|
20 |
He T W, Matta S K, Du A, et al. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1546-1551.
|
21 |
Zhao J X, Chen Z F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study[J]. Journal of the American Chemical Society, 2017, 139(36): 12480-12487.
|
22 |
Abel M, Clair S, Ourdjini O, et al. Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film[J]. Journal of the American Chemical Society, 2011, 133(5): 1203-1205.
|
23 |
Kambe T, Sakamoto R, Hoshiko K, et al. π-conjugated nickel bis(dithiolene) complex nanosheet[J]. Journal of the American Chemical Society, 2013, 135(7): 2462-2465.
|
24 |
Song Q L, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes[J]. Advanced Materials, 2016, 28(13):2629-2637.
|
25 |
Xu G Y, Nie P, Dou H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials Today, 2017, 20(4): 191-209.
|
26 |
Wu S, Min H, Shi W, et al. Multicenter metal–organic framework‐based ratiometric fluorescent sensors[J]. Advanced Materials, 2020, 32(3):1805871.
|
27 |
Zhu L, Liu X, Jiang H, et al. Metal–organic frameworks for heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12): 8129-8176.
|
28 |
Tian H, Zhang J Q, Ho W K, et al. Two-dimensional metal-phosphorus network[J]. Matter, 2020, 2(1):111-118.
|
29 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
|
30 |
Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979.
|
31 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
32 |
Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
|
33 |
Nørskov J K, Rossmeisl J, Logadottir A A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
|
34 |
Grimme S. Semiempirical GGA-type density functional constructed with a long‐range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
|
35 |
Mathew K, Sundararaman R, Letchworthweaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. Journal of Chemical Physics, 2014, 140(8): 084106.
|
36 |
Montoya J H, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186.
|