化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4941-4949.DOI: 10.11949/0438-1157.20210566
张杰1(),刘壮1,2(),巨晓洁1,2,谢锐1,2,汪伟1,2,褚良银1,2
收稿日期:
2021-04-22
修回日期:
2021-05-24
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
刘壮
作者简介:
张杰(1996—),男,硕士研究生,基金资助:
Jie ZHANG1(),Zhuang LIU1,2(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Liangyin CHU1,2
Received:
2021-04-22
Revised:
2021-05-24
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhuang LIU
摘要:
二维膜因其可控的结构和通道特有的物理化学性质,在气体分离、海水淡化、污水处理等诸多分离领域展现出巨大的应用潜力。通过层状Mg/Al氢氧化物(LDH)单片与聚乙烯醇(PVA)高分子链之间的氢键相互作用,层层堆叠构建了PVA/LDH复合膜。利用SEM、XRD考察了PVA与LDH的配比对于复合膜层状结构与层间距高度的影响规律。考察了PVA/LDH复合膜的纯水通量及染料模型分子的截留率。结果表明,不同PVA混合量的复合膜断面都具有层状结构。由于氢键作用导致复合膜较之于纯LDH膜的层间距有所缩小,随着PVA含量增加复合膜层间距先减小后增加;在PVA含量为15%时达到最小值,PVA含量超过15%后复合膜层间距有所增加。不同比例复合膜,以PVA质量分数为25%的复合膜的纯水通量最大;同时,该复合膜对分子量在300~800的染料分子具有优异的截留性能,截留率均超过97%。该工作为PVA/LDH复合膜在印染废水处理提供了新思路。
中图分类号:
张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
Jie ZHANG, Zhuang LIU, Xiaojie JU, Rui XIE, Wei WANG, Liangyin CHU. Fabrication and dye separation performance study of layered Mg/Al hydroxide/polyvinyl alcohol composite membrane[J]. CIESC Journal, 2021, 72(9): 4941-4949.
图3 不同PVA质量分数PVA/LDH复合膜的X射线衍射谱图(a)和复合膜层间距(b)
Fig.3 XRD patterns (a) and interlamellar spacing (b) of PVA/LDH composite membranes with different PVA mass fraction
图5 不同PVA质量分数PVA/LDH复合膜的热重分析曲线(a)和复合膜实际混合比(b)
Fig.5 Thermogravimetric analysis (a) and real PVA mass fraction (b) of PVA/LDH composite membrane with different PVA mass fraction
1 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
2 | Zhan H L, Xiong Z Y, Cheng C, et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes[J]. Advanced Materials, 2020, 32(18): 1904562. |
3 | Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397. |
4 | Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
5 | Yang X D, Yang Y B, Fu L N, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28(3): 1704505. |
6 | Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1): 1-7. |
7 | Pendse A, Cetindag S, Lin M H, et al. Charged layered boron nitride-nanoflake membranes for efficient ion separation and water purification[J]. Small, 2019, 15(49): 1904590. |
8 | Wang Y, Wu N N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation[J]. Nature Communications, 2019, 10: 2500. |
9 | Lu P, Liu Y, Zhou T T, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. Journal of Membrane Science, 2018, 567: 89-103. |
10 | Razmjou A, Eshaghi G, Orooji Y, et al. Lithium ion-selective membrane with 2D subnanometer channels[J]. Water Research, 2019, 159: 313-323. |
11 | Prozorovska L, Kidambi P R. State-of-the-art and future prospects for atomically thin membranes from 2D materials[J]. Advanced Materials, 2018, 30(52): 1801179. |
12 | Wang L D, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
13 | Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
14 | 王瑞瑞, 赵有璟, 邵明飞, 等. 层状双金属氢氧化物用于催化水氧化的研究进展[J]. 化工学报, 2016, 67(1): 54-72. |
Wang R R, Zhao Y J, Shao M F, et al. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54-72. | |
15 | Wang J Y, Zhang T P, Li M, et al. Arsenic removal from water/wastewater using layered double hydroxide derived adsorbents, a critical review[J]. RSC Advances, 2018, 8(40): 22694-22709. |
16 | Asiabi H, Yamini Y, Shamsayei M. Highly selective and efficient removal of arsenic(V), chromium(Ⅵ) and selenium(Ⅵ) oxyanions by layered double hydroxide intercalated with zwitterionic glycine[J]. Journal of Hazardous Materials, 2017, 339: 239-247. |
17 | 马嘉壮, 陈颖, 李凯涛, 等. 镁基插层结构功能材料研究进展[J]. 化工学报, 2021, 72(6): 2922-2933. |
Ma J Z, Chen Y, Li K T, et al. Research progress on magnesium-based intercalated functional materials[J]. CIESC Journal, 2021, 72(6): 2922-2933. | |
18 | Zhang G H, Zhang X Q, Meng Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
19 | Chen C, Tao L, Du S Q, et al. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage[J]. Advanced Functional Materials, 2020, 30(14): 1909832. |
20 | Sun Z Y, Jin L, Shi W Y, et al. Controllable photoluminescence properties of an anion-dye-intercalated layered double hydroxide by adjusting the confined environment[J]. Langmuir, 2011, 27(11): 7113-7120. |
21 | Ameena Shirin V K, Sankar R, Johnson A P, et al. Advanced drug delivery applications of layered double hydroxide[J]. Journal of Controlled Release, 2021, 330: 398-426. |
22 | Gao Y S, Wu J W, Wang Q, et al. Flame retardant polymer/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry A, 2014, 2(29): 10996. |
23 | Liu Y, Wang N Y, Caro J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity[J]. Journal of Materials Chemistry A, 2014, 2(16): 5716-5723. |
24 | Liu Y, Wang N Y, Cao Z W, et al. Molecular sieving through interlayer galleries[J]. Journal of Materials Chemistry A, 2014, 2(5): 1235-1238. |
25 | Wang N X, Huang Z, Li X T, et al. Tuning molecular sieving channels of layered double hydroxides membrane with direct intercalation of amino acids[J]. Journal of Materials Chemistry A, 2018, 6(35): 17148-17155. |
26 | Sun P, Ma R, Bai X, et al. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity[J]. Science Advances, 2017, 3(4): e1602629. |
27 | Zhu H, Huang S, Yang Z, et al. Oriented printable layered double hydroxide thin films via facile filtration[J]. Journal of Materials Chemistry, 2011, 21(9): 2950. |
28 | Han J B, Xu X Y, Rao X Y, et al. Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors[J]. J. Mater. Chem., 2011, 21(7): 2126-2130. |
29 | He X Y, Cao L, He G W, et al. A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(22): 10277-10285. |
30 | Li L, Ma R Z, Ebina Y, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chemistry of Materials, 2005, 17(17): 4386-4391. |
31 | Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460. |
32 | Dong Y P, Lin C, Gao S J, et al. Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection[J]. Journal of Membrane Science, 2020, 607: 118184. |
33 | Zhan Y Q, Wan X Y, He S J, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chemical Engineering Journal, 2018, 333: 132-145. |
34 | Zhao S, Zhu H T, Wang Z, et al. A loose hybrid nanofiltration membrane fabricated via chelating-assisted in situ growth of Co/Ni LDHs for dye wastewater treatment[J]. Chemical Engineering Journal, 2018, 353: 460-471. |
35 | Huang Z, Wang N X, Li X T, et al. Calcination of layered double hydroxide membrane with enhanced nanofiltration performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 368-374. |
36 | Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303: 555-564. |
37 | Zhang P, Gong J L, Zeng G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chemical Engineering Journal, 2017, 322: 657-666. |
38 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||