1 |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
2 |
Zhan H L, Xiong Z Y, Cheng C, et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes[J]. Advanced Materials, 2020, 32(18): 1904562.
|
3 |
Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397.
|
4 |
Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030.
|
5 |
Yang X D, Yang Y B, Fu L N, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28(3): 1704505.
|
6 |
Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1): 1-7.
|
7 |
Pendse A, Cetindag S, Lin M H, et al. Charged layered boron nitride-nanoflake membranes for efficient ion separation and water purification[J]. Small, 2019, 15(49): 1904590.
|
8 |
Wang Y, Wu N N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation[J]. Nature Communications, 2019, 10: 2500.
|
9 |
Lu P, Liu Y, Zhou T T, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. Journal of Membrane Science, 2018, 567: 89-103.
|
10 |
Razmjou A, Eshaghi G, Orooji Y, et al. Lithium ion-selective membrane with 2D subnanometer channels[J]. Water Research, 2019, 159: 313-323.
|
11 |
Prozorovska L, Kidambi P R. State-of-the-art and future prospects for atomically thin membranes from 2D materials[J]. Advanced Materials, 2018, 30(52): 1801179.
|
12 |
Wang L D, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522.
|
13 |
Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.
|
14 |
王瑞瑞, 赵有璟, 邵明飞, 等. 层状双金属氢氧化物用于催化水氧化的研究进展[J]. 化工学报, 2016, 67(1): 54-72.
|
|
Wang R R, Zhao Y J, Shao M F, et al. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54-72.
|
15 |
Wang J Y, Zhang T P, Li M, et al. Arsenic removal from water/wastewater using layered double hydroxide derived adsorbents, a critical review[J]. RSC Advances, 2018, 8(40): 22694-22709.
|
16 |
Asiabi H, Yamini Y, Shamsayei M. Highly selective and efficient removal of arsenic(V), chromium(Ⅵ) and selenium(Ⅵ) oxyanions by layered double hydroxide intercalated with zwitterionic glycine[J]. Journal of Hazardous Materials, 2017, 339: 239-247.
|
17 |
马嘉壮, 陈颖, 李凯涛, 等. 镁基插层结构功能材料研究进展[J]. 化工学报, 2021, 72(6): 2922-2933.
|
|
Ma J Z, Chen Y, Li K T, et al. Research progress on magnesium-based intercalated functional materials[J]. CIESC Journal, 2021, 72(6): 2922-2933.
|
18 |
Zhang G H, Zhang X Q, Meng Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review[J]. Chemical Engineering Journal, 2020, 392: 123684.
|
19 |
Chen C, Tao L, Du S Q, et al. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage[J]. Advanced Functional Materials, 2020, 30(14): 1909832.
|
20 |
Sun Z Y, Jin L, Shi W Y, et al. Controllable photoluminescence properties of an anion-dye-intercalated layered double hydroxide by adjusting the confined environment[J]. Langmuir, 2011, 27(11): 7113-7120.
|
21 |
Ameena Shirin V K, Sankar R, Johnson A P, et al. Advanced drug delivery applications of layered double hydroxide[J]. Journal of Controlled Release, 2021, 330: 398-426.
|
22 |
Gao Y S, Wu J W, Wang Q, et al. Flame retardant polymer/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry A, 2014, 2(29): 10996.
|
23 |
Liu Y, Wang N Y, Caro J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity[J]. Journal of Materials Chemistry A, 2014, 2(16): 5716-5723.
|
24 |
Liu Y, Wang N Y, Cao Z W, et al. Molecular sieving through interlayer galleries[J]. Journal of Materials Chemistry A, 2014, 2(5): 1235-1238.
|
25 |
Wang N X, Huang Z, Li X T, et al. Tuning molecular sieving channels of layered double hydroxides membrane with direct intercalation of amino acids[J]. Journal of Materials Chemistry A, 2018, 6(35): 17148-17155.
|
26 |
Sun P, Ma R, Bai X, et al. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity[J]. Science Advances, 2017, 3(4): e1602629.
|
27 |
Zhu H, Huang S, Yang Z, et al. Oriented printable layered double hydroxide thin films via facile filtration[J]. Journal of Materials Chemistry, 2011, 21(9): 2950.
|
28 |
Han J B, Xu X Y, Rao X Y, et al. Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors[J]. J. Mater. Chem., 2011, 21(7): 2126-2130.
|
29 |
He X Y, Cao L, He G W, et al. A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(22): 10277-10285.
|
30 |
Li L, Ma R Z, Ebina Y, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chemistry of Materials, 2005, 17(17): 4386-4391.
|
31 |
Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460.
|
32 |
Dong Y P, Lin C, Gao S J, et al. Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection[J]. Journal of Membrane Science, 2020, 607: 118184.
|
33 |
Zhan Y Q, Wan X Y, He S J, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chemical Engineering Journal, 2018, 333: 132-145.
|
34 |
Zhao S, Zhu H T, Wang Z, et al. A loose hybrid nanofiltration membrane fabricated via chelating-assisted in situ growth of Co/Ni LDHs for dye wastewater treatment[J]. Chemical Engineering Journal, 2018, 353: 460-471.
|
35 |
Huang Z, Wang N X, Li X T, et al. Calcination of layered double hydroxide membrane with enhanced nanofiltration performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 368-374.
|
36 |
Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303: 555-564.
|
37 |
Zhang P, Gong J L, Zeng G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chemical Engineering Journal, 2017, 322: 657-666.
|
38 |
Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
|