化工学报 ›› 2022, Vol. 73 ›› Issue (1): 32-45.doi: 10.11949/0438-1157.20210885

• 综述与专论 • 上一篇    下一篇

电催化氮还原合成氨电化学系统研究进展

刘恒源(),王海辉,徐建鸿()   

  1. 化学工程联合国家重点实验室,清华大学化学工程系,北京 100084
  • 收稿日期:2021-06-30 修回日期:2021-10-17 出版日期:2022-01-05 发布日期:2022-01-18
  • 通讯作者: 徐建鸿 E-mail:liu-hy19@mails.tsinghua.edu.cn;xujianhong@mail.tsinghua.edu.cn
  • 作者简介:刘恒源(1997—),男,博士研究生,liu-hy19@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(22025801)

Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen

Hengyuan LIU(),Haihui WANG,Jianhong XU()   

  1. State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-06-30 Revised:2021-10-17 Published:2022-01-05 Online:2022-01-18
  • Contact: Jianhong XU E-mail:liu-hy19@mails.tsinghua.edu.cn;xujianhong@mail.tsinghua.edu.cn

摘要:

氨是化肥、涂料等领域中重要的化工原料,是产量第二高的商用化学品。目前,90%以上的氨均来自Haber-Bosch法,该工艺需要高温、高压条件,能耗较高,且依赖化石燃料的使用,产生大量CO2排放,在倡导节能环保的新时代下,该工艺面临严重的能耗及环保问题。电催化氮还原合成氨工艺是一种采用电能驱动的节能工艺,且原料为绿色环保的H2O和N2,其有望替代传统合成氨工艺。但是目前该工艺存在一些技术难点有待突破,使其产氨速率、法拉第效率等性能不高,距离商用化生产差距较大。分析总结了该工艺的技术难点,围绕该领域的优化策略,重点综述了针对合成氨电化学系统的改进措施,以及近几年文献报道的研究进展,最后对该领域的未来发展进行展望。

关键词: 电化学, 催化, 化学过程, 氮还原反应, 氨合成, 电化学系统

Abstract:

Ammonia is an important chemical raw material in fertilizer, coating and other fields, and it is the second highest production of commercial chemical. At present, more than 90% of ammonia comes from the Haber-Bosch process. This process requires high temperature and high pressure conditions, high energy consumption, and relies on the use of fossil fuels to produce a large amount of CO2 emissions. In the new era of advocating energy conservation and environmental protection, the process is facing serious energy consumption and pollution problems. The electrocatalytic nitrogen reduction process for ammonia synthesis is a kind of energy saving process driven by electric energy, and the raw materials are H2O and N2. The process is expected to replace the traditional ammonia synthesis process. However, there are some technical difficulties to be broken through in this process. Its ammonia production rate and Faraday efficiency are not high, and there is a big gap between the process and commercial industrial production. In this paper, the technical difficulties of the process are analyzed and summarized. Based on the optimization strategies in this field, the improvement measures for the electrochemical system of synthetic ammonia and the research progress reported in recent years are summarized. Finally, the future development of this field is prospected.

Key words: electrochemistry, catalysis, chemical processes, nitrogen reduction reaction, ammonia synthesis, electrochemical system

中图分类号: 

  • TQ 150.5
1 Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
2 Liao W R, Xie K, Liu L J, et al. Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia[J]. Journal of Energy Chemistry, 2021, 62: 359-366.
3 Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594.
4 Ghavam S, Vahdati M, Wilson I A G, et al. Sustainable ammonia production processes[J]. Frontiers in Energy Research, 2021, 9: 580808.
5 Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239.
6 Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500.
7 Kitano M, Kanbara S, Inoue Y, et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis[J]. Nature Communications, 2015, 6: 6731.
8 Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): 6611.
9 Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450.
10 Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis[J]. Coordination Chemistry Reviews, 2013, 257(17/18): 2551-2564.
11 van der Ham C J M, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.
12 成晖. 电催化氮还原合成氨的能效提升策略研究[D]. 广州: 华南理工大学, 2020.
Cheng H. Basic research on energy efficiency improvement strategy of electrocatalytic nitrogen reduction synthesis of ammonia[D]. Guangzhou: South China University of Technology, 2020.
13 Soloveichik G. Renewable energy to fuels through utilization of energy dense liquids (REFUEL)[EB/OL]. .
14 Battino R, Rettich T R, Tominaga T. The solubility of nitrogen and air in liquids[J]. Journal of Physical Chemical Reference Data, 1984, 13(2): 563-600.
15 Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.
16 Abghoui Y, Skúlason E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts[J]. Catalysis Today, 2017, 286: 69-77.
17 Zhang Q K, Liu B L, Yu L P, et al. Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium[J]. ChemCatChem, 2020, 12(1): 334-341.
18 Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18(1): 1-21.
19 Skúlason E, Bligaard T, Bligaard T, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245.
20 Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214.
21 Su J F, Zhao H Y, Fu W W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589.
22 Liu D, Zhang G, Ji Q, et al. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25758-25765.
23 Xiong W, Guo Z, Zhao S J, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983.
24 Liu Y M, Xu Q, Fan X F, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363.
25 Yuan M L, Zhang H H, Gao D L, et al. Support effect boosting the electrocatalytic N2 reduction activity of Ni2P/N,P-codoped carbon nanosheet hybrids[J]. Journal of Materials Chemistry A, 2020, 8(5): 2691-2700.
26 Liao W R, Qi L, Wang Y L, et al. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance[J]. Advanced Functional Materials, 2021, 31(22): 2009151.
27 Li L Q, Tang C, Xia B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908.
28 Li P X, Fu W Z, Zhuang P Y, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J]. Small, 2019, 15(40): 1902535.
29 Zhang X X, Wu T W, Wang H B, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media[J]. ACS Catalysis, 2019, 9(5): 4609-4615.
30 Yang X X, Li K, Cheng D M, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7762-7769.
31 Yu J L, Li J, Zhu X J, et al. Structured polyaniline: an efficient and durable electrocatalyst for the nitrogen reduction reaction in acidic media[J]. ChemElectroChem, 2019, 6(8): 2215-2218.
32 Yang B, Ding W L, Zhang H H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687.
33 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491.
Zheng M Y, Wan Y C, Lyu R T. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491.
34 Cui X Y, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369.
35 Lan R, Tao S W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte[J]. RSC Advances, 2013, 3(39): 18016-18021.
36 Renner J N, Greenlee L F, Ayres K E, et al. Electrochemical synthesis of ammonia: a low pressure, low temperature approach[J]. Interface Magazine, 2015, 24(2): 51-57.
37 Lan R, Irvine J T S, Tao S W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145.
38 Chen S M, Perathoner S, Ampelli C, et al. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7393-7400.
39 Chen G F, Cao X R, Wu S, et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy[J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774.
40 Liu H M, Han S H, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217.
41 Köleli F, Kayan D B. Low overpotential reduction of dinitrogen to ammonia in aqueous media[J]. Journal of Electroanalytical Chemistry, 2010, 638(1): 119-122.
42 Kugler K, Luhn M, Schramm J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782.
43 Ampelli C. Electrode design for ammonia synthesis[J]. Nature Catalysis, 2020, 3(5): 420-421.
44 Liu Y, Huang B M, Chen X F, et al. Electrocatalytic production of ammonia: biomimetic electrode-electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 271: 118919.
45 Chamoun M, Skårman B, Vidarsson H, et al. Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodes[J]. Journal of the Electrochemical Society, 2017, 164(6): A1251-A1257.
46 Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synthesis — the selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709.
47 Hao Y C, Guo Y, Chen L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2(5): 448-456.
48 Malkhandi S, Yang B, Manohar A K, et al. Self-assembled monolayers of n‑alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. Journal of the American Chemical Society, 2013, 135(1): 347-353.
49 Kim K, Lee N, Yoo C Y, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(7): F610-F612.
50 Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(14): F1523-F1526.
51 Zhou F L, Azofra L M, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520.
52 Suryanto B H R, Kang C S M, Wang D B, et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions[J]. ACS Energy Letters, 2018, 3(6): 1219-1224.
53 Lazouski N, Chung M, Williams K, et al. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen[J]. Nature Catalysis, 2020, 3(5): 463-469.
54 Lazouski N, Schiffer Z J, Williams K, et al. Understanding continuous lithium-mediated electrochemical nitrogen reduction[J]. Joule, 2019, 3(4): 1127-1139.
55 Andersen S Z, Statt M J, Bukas V J, et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction[J]. Energy & Environmental Science, 2020, 13(11): 4291-4300.
56 Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191.
57 Guo Y, Yang Q, Wang D H, et al. A rechargeable Al-N2 battery for energy storage and highly efficient N2 fixation[J]. Energy & Environmental Science, 2020, 13(9): 2888-2895.
58 Cheng H, Cui P, Wang F R, et al. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium[J]. Angewandte Chemie International Edition, 2019, 58(43): 15541-15547.
59 Zhao L, Kuang X, Chen C, et al. Boosting electrocatalytic nitrogen fixation via energy-efficient anodic oxidation of sodium gluconate[J]. Chemical Communications, 2019, 55(68): 10170-10173.
60 Bai J, Huang H, Li F M, et al. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates[J]. Journal of Materials Chemistry A, 2019, 7(37): 21149-21156.
61 Xu G R, Batmunkh M, Donne S, et al. Ruthenium(Ⅲ) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading[J]. Journal of Materials Chemistry A, 2019, 7(44): 25433-25440.
62 Gao W Y, Hao Y C, Su X, et al. Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates[J]. Chemical Communications, 2019, 55(72): 10705-10708.
63 Fang Y F, Liu Z C, Han J R, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406.
64 Li J, Wu J Z, Wang H Y, et al. Acid-durable electride with layered ruthenium for ammonia synthesis: boosting the activity via selective etching[J]. Chemical Science, 2019, 10(22): 5712-5718.
65 Yuen S H, Pollard A G. Determination of nitrogen in agricultural materials by the nessler reagent. Ⅱ.—Micro-determinations in plant tissue and in soil extracts[J]. Journal of the Science of Food and Agriculture, 1954, 5(8): 364-369.
66 Ivančič I, Degobbis D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method[J]. Water Research, 1984, 18(9): 1143-1147.
67 刘洋. 策略性提升常温常压下电催化合成氨效率的研究[D]. 南宁: 广西大学, 2020.
Liu Y. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient conditions[D]. Nanning: Guangxi University, 2020.
68 Shen H D, Choi C, Masa J, et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754.
69 Shan W P, Liu F D, He H, et al. The remarkable improvement of a Ce-Ti based catalyst for NOx abatement, prepared by a homogeneous precipitation method[J]. ChemCatChem, 2011, 3(8): 1286-1289.
70 Wang Z P, Wang Z W, Ye Y, et al. Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82-) system[J]. Chemical Engineering Science, 2016, 145: 133-140.
71 Andersen S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508.
[1] 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216.
[2] 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr()的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206.
[3] 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874.
[4] 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033.
[5] 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597.
[6] 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473.
[7] 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577.
[8] 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780.
[9] 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112.
[10] 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009.
[11] 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259.
[12] 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. αω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369.
[13] 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091.
[14] 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101.
[15] 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!