1 |
Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products — closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048.
|
2 |
Kagawa S, Suh S, Hubacek K, et al. CO2 emission clusters within global supply chain networks: implications for climate change mitigation[J]. Global Environmental Change, 2015, 35: 486-496.
|
3 |
Markewitz P, Kuckshinrichs W, Leitner W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 [J]. Energy & Environmental Science, 2012, 5(6): 7281.
|
4 |
Atsonios K, Panopoulos K D, Kakaras E. Thermocatalytic CO2 hydrogenation for methanol and ethanol production: process improvements[J]. International Journal of Hydrogen Energy, 2016, 41(2): 792-806.
|
5 |
Fu Y H, Sun D R, Chen Y J, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angewandte Chemie International Edition, 2012, 51(14): 3364-3367.
|
6 |
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408.
|
7 |
Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436.
|
8 |
Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.
|
9 |
Gu Z X, Shen H, Shang L M, et al. Nanostructured copper-based electrocatalysts for CO2 reduction[J]. Small Methods, 2018, 2(11): 1800121.
|
10 |
Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672.
|
11 |
El-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes[J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514.
|
12 |
Bhatia S K, Bhatia R K, Jeon J M, et al. Carbon dioxide capture and bioenergy production using biological system — a review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 143-158.
|
13 |
Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, 5: 3242.
|
14 |
Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123.
|
15 |
Luc W, Collins C, Wang S W, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(5): 1885-1893.
|
16 |
Lv W X, Zhou J, Bei J J, et al. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate[J]. Applied Surface Science, 2017, 393: 191-196.
|
17 |
Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products[J]. Nature Catalysis, 2018, 1(10): 748-755.
|
18 |
Zhong D Z, Zhao Z J, Zhao Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols[J]. Angewandte Chemie International Edition, 2021, 60(9): 4879-4885.
|
19 |
Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges[J]. ACS Catalysis, 2021, 11(4): 2076-2097.
|
20 |
Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258.
|
21 |
Zhou Y S, Che F L, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10(9): 974-980.
|
22 |
Liang Z Q, Zhuang T T, Seifitokaldani A, et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2 [J]. Nature Communications, 2018, 9: 3828.
|
23 |
Zhang H G, Li J Z, Tan Q, et al. Metal-organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: progress, challenges, and perspectives[J]. Chemistry - A European Journal, 2018, 24(69): 18137-18157.
|
24 |
Li X F, Zhu Q L. MOF-based materials for photo- and electrocatalytic CO2 reduction[J]. EnergyChem, 2020, 2(3): 100033.
|
25 |
Hu H, Han L, Yu M Z, et al. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction[J]. Energy & Environmental Science, 2016, 9(1): 107-111.
|
26 |
Yang L, Gao M G, Dai B, et al. An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework[J]. Electrochimica Acta, 2016, 191: 813-820.
|
27 |
Zheng Y L, Cheng P, Xu J S, et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism[J]. Nanoscale, 2019, 11(11): 4911-4917.
|
28 |
Yao K L, Xia Y J, Li J, et al. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion[J]. Journal of Materials Chemistry A, 2020, 8(22): 11117-11123.
|
29 |
Majidi L, Ahmadiparidari A, Shan N N, et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials[J]. Advanced Materials, 2021, 33(10): 2004393.
|
30 |
Zhang R R, Hu L, Bao S X, et al. Surface polarization enhancement: high catalytic performance of Cu/CuO x /C nanocomposites derived from Cu-BTC for CO oxidation[J]. Journal of Materials Chemistry A, 2016, 4(21): 8412-8420.
|
31 |
Kar A K, Srivastava R. Selective synthesis of Cu-Cu2O/C and CuO-Cu2O/C catalysts for Pd-free C-C, C-N coupling and oxidation reactions[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 576-589.
|
32 |
Yang F, Deng P L, Wang Q Y, et al. Metal-organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables[J]. Journal of Materials Chemistry A, 2020, 8(25): 12418-12423.
|
33 |
Zheng Y, Vasileff A, Zhou X L, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659.
|