化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3802-3814.DOI: 10.11949/0438-1157.20220327
方辉煌(), 程金星, 罗宇(), 陈崇启, 周晨, 江莉龙()
收稿日期:
2022-03-02
修回日期:
2022-07-28
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
罗宇,江莉龙
作者简介:
方辉煌(1991—),男,博士,副研究员,hhfang@fzu.edu.cn
基金资助:
Huihuang FANG(), Jinxing CHENG, Yu LUO(), Chongqi CHEN, Chen ZHOU, Lilong JIANG()
Received:
2022-03-02
Revised:
2022-07-28
Online:
2022-09-05
Published:
2022-10-09
Contact:
Yu LUO, Lilong JIANG
摘要:
氨是一种无碳富氢的能源载体,体积能量密度高,易液化储存,是理想的储氢介质。以氨直接作为燃料,在低温碱性膜燃料电池中通过氨氧化反应实现化学能到电能的转化,是氨能源高效利用的理想路径之一。然而,低温氨氧化反应动力学缓慢、催化剂价格昂贵、易中毒等问题严重影响氨燃料电池性能,限制其大规模的商业化应用。因此,设计高效、廉价、稳定的催化剂是发展低温氨燃料电池技术的关键。本文首先综述了近些年研究者在氨氧化反应机理方面的探索,在深入理解反应体系的基础上,重点介绍了含贵金属和非贵金属催化剂设计制备及其在氨氧化反应中的进展,并总结了氨氧化催化剂在氨燃料电池中的性能。最后针对氨氧化催化剂目前存在的问题和未来的发展方向提出了建议,旨在为氨氧化催化剂的设计及低温氨燃料电池技术的发展提供研究思路。
中图分类号:
方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814.
Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(9): 3802-3814.
反应中间物质 | 表征技术 | 文献 |
---|---|---|
N-3参与AOR反应 | SERS | [ |
N2H4、NO中间体;NO抑制了电化学反应 | ATR-IR | [ |
低电位区(E(vs SCE)<-0.50 V):N2H4、NH2 | FTIR | [ |
高电位区(E(vs SCE)>-0.10 V):N2O、NO2- | FTIR | [ |
NO、NO2、N2H4 | ATR-FTIR | [ |
N2、NO和N2O | DEMS | [ |
表1 原位表征技术观察AOR过程产生的中间物种
Table 1 The intermediates of AOR process by in situ characterization techniques
反应中间物质 | 表征技术 | 文献 |
---|---|---|
N-3参与AOR反应 | SERS | [ |
N2H4、NO中间体;NO抑制了电化学反应 | ATR-IR | [ |
低电位区(E(vs SCE)<-0.50 V):N2H4、NH2 | FTIR | [ |
高电位区(E(vs SCE)>-0.10 V):N2O、NO2- | FTIR | [ |
NO、NO2、N2H4 | ATR-FTIR | [ |
N2、NO和N2O | DEMS | [ |
催化剂 | 电解液溶液 | 扫描速率/ (mV·s-1) | 起始电位 (vs RHE)/V | 峰值电流密度 | 文献 |
---|---|---|---|---|---|
PtIr/CNT (Pt∶Ir=4∶1) | 0.1 mol·L-1 NH3 + 0.1 mol·L-1 KOH | 50 | 0.38 | 230 mA·cm-2 ECSA | [ |
PtIr/N-rGO (Pt∶Ir=1∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.37 | 71 A·g-1 | [ |
PtRh/C (Pt∶Rh=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | -0.44① | 93.8 A·g-1 | [ |
Pt/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.484 | 77.3 A·g-1 | [ |
PtIr/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.43 | 25.1 A·g-1 | [ |
Pt5Ir5/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.369 | 66.3 A·g-1 | [ |
PtIr/ SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.42 | 90.6 A·g-1 | [ |
PtIrNi1/SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.399 | 124 A·g-1 | [ |
PtZn | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.42 | 0.60 mA·cm-2 ECSA | [ |
PtIrZn (Pt∶Ir=8∶2) | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.30 | 0.56 mA·cm-2 ECSA | [ |
CuPtRu (Pt∶Ru=7∶1) | 1 mol·L-1 KOH saturated with NH3 | 20 | 0.49 | 180 A·g-1 | [ |
PtIrZn2/CeO2-ZIF-8 | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 31.8 A·g-1 | [ |
PtIrZn2/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 61.4 A·g-1 | [ |
PtIr/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.33 | 64.6 A·g-1 | [ |
PtIrCu HCOND | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 122.9 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 0.69 | 75 A·g-1 | [ |
PtAu/C (Pt∶Au=7∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | 0.51 | 90 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.5 | 75.32 A·g-1 | [ |
Pt/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.52② | 39.9 A·g-1 | [ |
PtNi/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 76.4 A·g-1 | [ |
PtNiO/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 86.9 A·g-1 | [ |
Ni98Pd2 | 0.5 mol·L-1 NaNO3 + 0.2 mol·L-1 NH4NO3 | 50 | 1.3① | 150 A·g-1 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.47② | 52 mA·cm-2 | [ |
NiCu/C | 0.5 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 0.4① | 110.4 mA·cm-2 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 105 mA·cm-2 | [ |
Ni(OH)2/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 15 mA·cm-2 | [ |
NiCr/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 10 mA·cm-2 | [ |
NiMn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 20 mA·cm-2 | [ |
NiCo/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.35① | 10 mA·cm-2 | [ |
NiZn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.45① | 2 mA·cm-2 | [ |
Ni(OH)2 on NiOOH | 0.1 mol·L-1 NaSO4 + 0.003 mol·L-1 NH3 | 10 | 0.6① | 2.7 mA·cm-2 | [ |
①vs Hg/HgO。 ②vs Ag/AgCl。 |
表2 AOR在贵/非金属催化剂上的性能
Table 2 Activity of AOR over non-/noble metallic catalysts
催化剂 | 电解液溶液 | 扫描速率/ (mV·s-1) | 起始电位 (vs RHE)/V | 峰值电流密度 | 文献 |
---|---|---|---|---|---|
PtIr/CNT (Pt∶Ir=4∶1) | 0.1 mol·L-1 NH3 + 0.1 mol·L-1 KOH | 50 | 0.38 | 230 mA·cm-2 ECSA | [ |
PtIr/N-rGO (Pt∶Ir=1∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.37 | 71 A·g-1 | [ |
PtRh/C (Pt∶Rh=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | -0.44① | 93.8 A·g-1 | [ |
Pt/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.484 | 77.3 A·g-1 | [ |
PtIr/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.43 | 25.1 A·g-1 | [ |
Pt5Ir5/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.369 | 66.3 A·g-1 | [ |
PtIr/ SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.42 | 90.6 A·g-1 | [ |
PtIrNi1/SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.399 | 124 A·g-1 | [ |
PtZn | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.42 | 0.60 mA·cm-2 ECSA | [ |
PtIrZn (Pt∶Ir=8∶2) | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.30 | 0.56 mA·cm-2 ECSA | [ |
CuPtRu (Pt∶Ru=7∶1) | 1 mol·L-1 KOH saturated with NH3 | 20 | 0.49 | 180 A·g-1 | [ |
PtIrZn2/CeO2-ZIF-8 | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 31.8 A·g-1 | [ |
PtIrZn2/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 61.4 A·g-1 | [ |
PtIr/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.33 | 64.6 A·g-1 | [ |
PtIrCu HCOND | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 122.9 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 0.69 | 75 A·g-1 | [ |
PtAu/C (Pt∶Au=7∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | 0.51 | 90 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.5 | 75.32 A·g-1 | [ |
Pt/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.52② | 39.9 A·g-1 | [ |
PtNi/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 76.4 A·g-1 | [ |
PtNiO/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 86.9 A·g-1 | [ |
Ni98Pd2 | 0.5 mol·L-1 NaNO3 + 0.2 mol·L-1 NH4NO3 | 50 | 1.3① | 150 A·g-1 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.47② | 52 mA·cm-2 | [ |
NiCu/C | 0.5 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 0.4① | 110.4 mA·cm-2 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 105 mA·cm-2 | [ |
Ni(OH)2/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 15 mA·cm-2 | [ |
NiCr/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 10 mA·cm-2 | [ |
NiMn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 20 mA·cm-2 | [ |
NiCo/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.35① | 10 mA·cm-2 | [ |
NiZn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.45① | 2 mA·cm-2 | [ |
Ni(OH)2 on NiOOH | 0.1 mol·L-1 NaSO4 + 0.003 mol·L-1 NH3 | 10 | 0.6① | 2.7 mA·cm-2 | [ |
①vs Hg/HgO。 ②vs Ag/AgCl。 |
膜 | 燃料 | 阳极催化剂 | 阴极催化剂 | 温度/℃ | 峰值功率密度/ (mW·cm-2) | 文献 |
---|---|---|---|---|---|---|
AEM (PAP-TP) | 3 mol·L-1 NH3 3 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 80 | 135 | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 95 | 390 (0.2 MPa) | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Pd/C 0.4 mg·cm-2 | 95 | 304 (0.2 MPa) | [ |
AEM | NH3 | Pt/C 2 mg Pt·cm-2 | PGM-free | 100 | 420 | [ |
HEM (AHA) | 0.2 mol·L-1 NH3 1 mol·L-1 KOH | Pt/C 0.6 mg Pt·cm-2 | Pt/C 0.6 mg Pt·cm-2 | 80 | 0.22 | [ |
HEM (CPPO-PVA) | NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 11 | [ |
HEM (Resin-PVA) | 35% NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 9 | [ |
HEM (AMI-7001) | NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 65 | 0.26 | [ |
HEM (AMI-7001) | 1 mol·L-1 NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 25 | 0.71 | [ |
Mg-Al-CO32- LDH | 5 mol·L-1 MH3 1 mol·L-1 KOH | PtRu 3.3 mg·cm-2 | Pt/C | 80 | 4.5 | [ |
FAA AEM | 35% NH3 1 mol·L-1 KOH | NiCu/C 2.5 mg·cm-2 | SrCo0.8Cu0.1 Nb0.1O3-δ 18.67 mg·cm-2 | 25 | 0.25 | [ |
PAP-TP | NH3 + N2 | PtIr 2 mg PGM·cm-2 | Fe-N-C 3 mg·cm-2 | 95 | 75 | [ |
Tokuyama membrance | 16 mol·L-1 NH3 | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 120 | 180 | [ |
Tokuyama membrance | 12 mol·L-1 NH3 2.5 mol·L-1 KOH | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 100 | 280 | [ |
AEM (A201) | NH3 | Pt/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 4.76 | [ |
AEM (A201) | NH3 | PtRu/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 3.07 | [ |
AEM (A201) | NH3 | SnO2-Pt/C 0.4 mg Pt·cm-2 | Pt/C 0.4 mg Pt·cm-2 | 50 | 4.15 | [ |
表3 碱性膜直接氨燃料电池性能
Table 3 AEM-DAFC performance with various catalysts
膜 | 燃料 | 阳极催化剂 | 阴极催化剂 | 温度/℃ | 峰值功率密度/ (mW·cm-2) | 文献 |
---|---|---|---|---|---|---|
AEM (PAP-TP) | 3 mol·L-1 NH3 3 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 80 | 135 | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 95 | 390 (0.2 MPa) | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Pd/C 0.4 mg·cm-2 | 95 | 304 (0.2 MPa) | [ |
AEM | NH3 | Pt/C 2 mg Pt·cm-2 | PGM-free | 100 | 420 | [ |
HEM (AHA) | 0.2 mol·L-1 NH3 1 mol·L-1 KOH | Pt/C 0.6 mg Pt·cm-2 | Pt/C 0.6 mg Pt·cm-2 | 80 | 0.22 | [ |
HEM (CPPO-PVA) | NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 11 | [ |
HEM (Resin-PVA) | 35% NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 9 | [ |
HEM (AMI-7001) | NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 65 | 0.26 | [ |
HEM (AMI-7001) | 1 mol·L-1 NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 25 | 0.71 | [ |
Mg-Al-CO32- LDH | 5 mol·L-1 MH3 1 mol·L-1 KOH | PtRu 3.3 mg·cm-2 | Pt/C | 80 | 4.5 | [ |
FAA AEM | 35% NH3 1 mol·L-1 KOH | NiCu/C 2.5 mg·cm-2 | SrCo0.8Cu0.1 Nb0.1O3-δ 18.67 mg·cm-2 | 25 | 0.25 | [ |
PAP-TP | NH3 + N2 | PtIr 2 mg PGM·cm-2 | Fe-N-C 3 mg·cm-2 | 95 | 75 | [ |
Tokuyama membrance | 16 mol·L-1 NH3 | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 120 | 180 | [ |
Tokuyama membrance | 12 mol·L-1 NH3 2.5 mol·L-1 KOH | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 100 | 280 | [ |
AEM (A201) | NH3 | Pt/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 4.76 | [ |
AEM (A201) | NH3 | PtRu/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 3.07 | [ |
AEM (A201) | NH3 | SnO2-Pt/C 0.4 mg Pt·cm-2 | Pt/C 0.4 mg Pt·cm-2 | 50 | 4.15 | [ |
30 | Katsounaros I, Chen T, Gewirth A A, et al. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)[J]. The Journal of Physical Chemistry Letters, 2016, 7(3): 387-392. |
31 | Li H J, Li Y D, Koper M T M, et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(44): 15694-15701. |
32 | Estejab A, Botte G G. Ammonia oxidation kinetics on bimetallic clusters of platinum and iridium: a theoretical approach[J]. Molecular Catalysis, 2018, 445: 279-292. |
33 | Adli N M, Zhang H, Mukherjee S, et al. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(15): J3130-J3147. |
34 | Medford A J, Vojvodic A, Hummelshøj J S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42. |
35 | Novell-Leruth G, Valcarcel A, Clotet A, et al. DFT characterization of adsorbed NH x species on Pt(100) and Pt(111) surfaces[J]. The Journal of Physical Chemistry. B, 2005, 109(38): 18061-18069. |
36 | Novell-Leruth G, Valcárcel A, Pérez-Ramírez J, et al. Ammonia dehydrogenation over platinum-group metal surfaces. Structure, stability, and reactivity of adsorbed NH x species[J]. The Journal of Physical Chemistry C, 2007, 111(2): 860-868. |
37 | Daramola D A, Botte G G. Theoretical study of ammonia oxidation on platinum clusters—adsorption of ammonia and water fragments[J]. Computational and Theoretical Chemistry, 2012, 989: 7-17. |
38 | Estejab A, Botte G G. DFT calculations of ammonia oxidation reactions on bimetallic clusters of platinum and iridium[J]. Computational and Theoretical Chemistry, 2016, 1091: 31-40. |
39 | Katsounaros I, Figueiredo M C, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment[J]. Journal of Catalysis, 2018, 359: 82-91. |
40 | Peng W, Xiao L, Huang B, et al. Inhibition effect of surface oxygenated species on ammonia oxidation reaction[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23050-23056. |
41 | Yang K R, Liu J, Yang B. Mechanism and active species in NH3 dehydrogenation under an electrochemical environment: an Ab initio molecular dynamics study[J]. ACS Catalysis, 2021, 11(7): 4310-4318. |
42 | Vidal-Iglesias F J, Garcı́a-Aráez N, Montiel V, et al. Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium[J]. Electrochemistry Communications, 2003, 5(1): 22-26. |
43 | Vidal-Iglesias F J, Solla-Gullón J, Montiel V, et al. Ammonia selective oxidation on Pt(100) sites in an alkaline medium[J]. The Journal of Physical Chemistry. B, 2005, 109(26): 12914-12919. |
44 | Rosca V, Koper M T M. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J]. Electrochimica Acta, 2008, 53(16): 5199-5205. |
45 | Bertin E, Garbarino S, Guay D, et al. Electrodeposited platinum thin films with preferential (100) orientation: characterization and electrocatalytic properties for ammonia and formic acid oxidation[J]. Journal of Power Sources, 2013, 225: 323-329. |
46 | Zhang C L, Hwang S Y, Peng Z M. Shape-enhanced ammonia electro-oxidation property of a cubic platinum nanocrystal catalyst prepared by surfactant-free synthesis[J]. Journal of Materials Chemistry A, 2013, 1(45): 14402. |
47 | Fu G T, Liu C, Wu R, et al. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation[J]. J. Mater. Chem. A, 2014, 2(42): 17883-17888. |
48 | Zhong C, Liu J, Ni Z Y, et al. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities[J]. Science China Materials, 2014, 57(1): 13-25. |
49 | Zhong C, Hu W B, Cheng Y F. On the essential role of current density in electrocatalytic activity of the electrodeposited platinum for oxidation of ammonia[J]. Journal of Power Sources, 2011, 196(19): 8064-8072. |
50 | Liu J, Hu W B, Zhong C, et al. Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia[J]. Journal of Power Sources, 2013, 223: 165-174. |
51 | Liu J, Zhong C, Yang Y, et al. Electrochemical preparation and characterization of Pt particles on ITO substrate: morphological effect on ammonia oxidation[J]. International Journal of Hydrogen Energy, 2012, 37(11): 8981-8987. |
52 | Wang X X, Sokolowski J, Liu H, et al. Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41(5): 739-755. |
53 | Ribeiro V A, de Freitas I C, Neto A O, et al. Platinum nanoparticles supported on nitrogen-doped carbon for ammonia electro-oxidation[J]. Materials Chemistry and Physics, 2017, 200: 354-360. |
54 | Hanada N, Kohase Y, Hori K, et al. Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode[J]. Electrochimica Acta, 2020, 341: 136027. |
55 | Zhou Y F, Zhang G Q, Yu M C, et al. High mass and specific activity for ammonia electro-oxidation through optimization of dispersion degree and particle size of Pt-Ir nanoparticles over N-doped reductive graphene oxide[J]. ChemistrySelect, 2018, 3(12): 3433-3443. |
56 | 郁明珠, 李林儒, 陆天虹, 等. 碳化钨和Vulcan XC-72炭混合载Ir催化剂对氨氧化的电催化性能[J]. 应用化学, 2013, 30(4): 448-452. |
Yu M Z, Li L R, Lu T H, et al. Electrocatalytic performance of Ir catalyst supported on mixture of WC and Vulcan XC-72 carbon for ammonia oxidation[J]. Chinese Journal of Applied Chemistry, 2013, 30(4): 448-452. | |
57 | 李林儒, 付宏刚, 陆天虹. 石墨烯载Ir催化剂对氨氧化的电催化性能[J]. 高等学校化学学报, 2012, 33(1): 102-106. |
Li L R, Fu H G, Lu T H. Electrocatalytic performance of graphene supported Ir catalyst for ammonia oxidation[J]. Chemical Journal of Chinese Universities, 2012, 33(1): 102-106. | |
58 | Ntais S, Serov A, Andersen N I, et al. Promotion of ammonia electrooxidation on Pt nanoparticles by nickel oxide support[J]. Electrochimica Acta, 2016, 222: 1455-1463. |
59 | 黄璐, 杨瑶, 潘道东. 二氧化钛载Ir催化剂对氨氧化的电催化[J]. 应用化学, 2013, 30(5): 584-589. |
Huang L, Yang Y, Pan D D. Electrocatalytic oxidation of ammonia with Ir catalysts supported on TiO2 [J]. Chinese Journal of Applied Chemistry, 2013, 30(5): 584-589. | |
60 | Zhang C, Xu L, Yan Y, et al. Controlled synthesis of Pt nanowires with ordered large mesopores for methanol oxidation reaction[J]. Scientific Reports, 2016, 6(1): 1-8. |
61 | Silva J C M, Piasentin R M, Spinacé E V, et al. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation[J]. Materials Chemistry and Physics, 2016, 180: 97-103. |
62 | Okanishi T, Katayama Y, Muroyama H, et al. SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 173: 364-369. |
63 | Katayama Y, Okanishi T, Muroyama H, et al. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts[J]. The Journal of Physical Chemistry C, 2015, 119(17): 9134-9141. |
64 | Katayama Y, Okanishi T, Muroyama H, et al. Enhancement of ammonia oxidation activity over Y2O3-modified platinum surface: promotion of NH2, ad dimerization process[J]. Journal of Catalysis, 2016, 344: 496-506. |
1 | Crabtree G W, Dresselhaus M S. The hydrogen fuel alternative[J]. MRS Bulletin, 2008, 33(4): 421-428. |
2 | 朱明原, 刘文博, 刘杨, 等. 氢能与燃料电池关键科学技术: 挑战与前景[J]. 上海大学学报(自然科学版), 2021, 27(3): 411-443. |
Zhu M Y, Liu W B, Liu Y, et al. Key scientific and technological principles of hydrogen energy and fuel cells: challenges and prospects[J]. Journal of Shanghai University (Natural Science Edition), 2021, 27(3): 411-443. | |
3 | 郭朋彦, 聂鑫鑫, 张瑞珠, 等. 氨燃料电池的研究现状及发展趋势[J]. 电源技术, 2019, 43(7): 1233-1236. |
Guo P Y, Nie X X, Zhang R Z, et al. Research status and development trend of ammonia fuel cells[J]. Chinese Journal of Power Sources, 2019, 43(7): 1233-1236. | |
4 | Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage[J]. Angewandte Chemie International Edition, 2009, 48(36): 6608-6630. |
5 | Jiao F, Xu B J. Electrochemical ammonia synthesis and ammonia fuel cells[J]. Advanced Materials, 2019, 31(31): 1805173. |
6 | 高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11. |
Gao J L, Yuan Z M, Shang H W, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016, 23(1): 1-11. | |
7 | Lan R, Irvine J T S, Tao S W. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1482-1494. |
8 | Zhong C, Hu W B, Cheng Y F. Recent advances in electrocatalysts for electro-oxidation of ammonia[J]. J. Mater. Chem. A, 2013, 1(10): 3216-3238. |
9 | Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
10 | 徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220. |
65 | Lomocso T L, Baranova E A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO x ) nanoparticles[J]. Electrochimica Acta, 2011, 56(24): 8551-8558. |
66 | Allagui A, Oudah M, Tuaev X, et al. Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2455-2463. |
67 | Imbeault R, Finkelstein D, Reyter D, et al. Kinetically stable Pt x Ir100- x alloy thin films prepared by pulsed laser deposition: oxidation of NH3 and poisoning resistance[J]. Electrochimica Acta, 2014, 142: 289-298. |
68 | Morita S, Kudo E, Shirasaka R, et al. Electrochemical oxidation of ammonia by multi-wall-carbon-nanotube-supported Pt shell-Ir core nanoparticles synthesized by an improved Cu short circuit deposition method[J]. Journal of Electroanalytical Chemistry, 2016, 762: 29-36. |
69 | Chan Y T, Siddharth K, Shao M H. Investigation of cubic Pt alloys for ammonia oxidation reaction[J]. Nano Research, 2020, 13(7): 1920-1927. |
70 | Siddharth K, Chan Y, Wang L, et al. Ammonia electro-oxidation reaction: recent development in mechanistic understanding and electrocatalyst design[J]. Current Opinion in Electrochemistry, 2018, 9: 151-157. |
71 | Bonnin E P, Biddinger E J, Botte G G. Effect of catalyst on electrolysis of ammonia effluents[J]. Journal of Power Sources, 2008, 182(1): 284-290. |
72 | Jiang J H. Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn[J]. Electrochemistry Communications, 2017, 75: 52-55. |
73 | Li Y, Pillai H S, Wang T, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells[J]. Energy & Environmental Science, 2021, 14(3): 1449-1460. |
74 | Hung C M. Electrochemical properties of PtPdRh alloy catalysts for ammonia electrocatalytic oxidation[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13815-13821. |
75 | Lin X, Zhang X R, Wang Z, et al. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction[J]. Journal of Colloid and Interface Science, 2021, 601: 1-11. |
76 | Manso R, Song L, Liang Z X, et al. CuPt and CuPtRu nanostructures for ammonia oxidation reaction[J]. ECS Transactions, 2018, 85(12): 177-182. |
10 | Xu Y M, Zheng C M, Zhang Y H. Application prospect of ammonia energy as clean energy[J]. Chemistry, 2019, 82(3): 214-220. |
11 | Zhao Y, Setzler B P, Wang J H, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
12 | Chang F, Gao W B, Guo J P, et al. Emerging materials and methods toward ammonia-based energy storage and conversion[J]. Advanced Materials, 2021, 33(50): 2005721. |
13 | Li Y, Li X, Pillai H S, et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation[J]. ACS Catalysis, 2020, 10(7): 3945-3957. |
14 | 陈钰娟, 但承益, 杨耀, 等. 电催化氧化氨的研究进展[J]. 材料导报, 2012, 26(5): 129-133. |
Chen Y J, Dan C Y, Yang Y, et al. Recent progress in electrocatalytic oxidation of ammonia[J]. Materials Review, 2012, 26(5): 129-133. | |
15 | Oswin H G, Salomon M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte[J]. Canadian Journal of Chemistry, 1963, 41(7): 1686-1694. |
16 | Guo W H, Zhang K X, Liang Z B, et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chemical Society Reviews, 2019, 48(24): 5658-5716. |
17 | Bunce N J, Bejan D. Mechanism of electrochemical oxidation of ammonia[J]. Electrochimica Acta, 2011, 56(24): 8085-8093. |
18 | Gerischer H, Mauerer A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 25(3): 421-433. |
19 | de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. |
20 | Vidal-Iglesias F J, Solla-Gullón J, Pérez J M, et al. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes[J]. Electrochemistry Communications, 2006, 8(1): 102-106. |
77 | Yao K, Cheng Y F. Investigation of the electrocatalytic activity of nickel for ammonia oxidation[J]. Materials Chemistry and Physics, 2008, 108(2/3): 247-250. |
78 | Despić A R, Dražić D M, Rakin P M. Kinetics of electrochemical oxidation of ammonia in alkaline solution[J]. Electrochimica Acta, 1966, 11(8): 997-1005. |
79 | Shih Y J, Huang Y H, Huang C P. In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution[J]. Electrochimica Acta, 2018, 281: 410-419. |
80 | Wang R Y, Liu H J, Zhang K, et al. Ni(Ⅱ)/Ni(Ⅲ) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation[J]. Chemical Engineering Journal, 2021, 404: 126795. |
81 | Fleischmann M, Korinek K, Pletcher D. The oxidation of organic compounds at a nickel anode in alkaline solution[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 31(1): 39-49. |
82 | Kapałka A, Cally A, Neodo S, et al. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode[J]. Electrochemistry Communications, 2010, 12(1): 18-21. |
83 | Allagui A, Sarfraz S, Baranova E A. Ni x Pd1- x (x = 0.98, 0.93, and 0.58) nanostructured catalysts for ammonia electrooxidation in alkaline media[J]. Electrochimica Acta, 2013, 110: 253-259. |
84 | Shih Y J, Huang Y H, Huang C P. Electrocatalytic ammonia oxidation over a nickel foam electrode: role of Ni(OH)2(s)-NiOOH(s) nanocatalysts[J]. Electrochimica Acta, 2018, 263: 261-271. |
85 | Xu W, Lan R, Du D W, et al. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2017, 218: 470-479. |
86 | Zhang M F, Zou P M, Jeerh G, et al. Electricity generation from ammonia in landfill leachate by an alkaline membrane fuel cell based on precious-metal-free electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12817-12824. |
87 | Zhang H M, Wang Y F, Kwok Y H, et al. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst[J]. ChemSusChem, 2018, 11(17): 2889-2897. |
88 | He S, Chen Y F, Wang M D, et al. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia[J]. Nano Energy, 2021, 80: 105528. |
89 | Zott M D, Peters J C. Enhanced ammonia oxidation catalysis by a low-spin iron complex featuring cis coordination sites[J]. Journal of the American Chemical Society, 2021, 143(20): 7612-7616. |
90 | Assumpção M H M T, Piasentin R M, Hammer P, et al. Oxidation of ammonia using PtRh/C electrocatalysts: fuel cell and electrochemical evaluation[J]. Applied Catalysis B: Environmental, 2015, 174/175: 136-144. |
91 | Liu J, Chen B, Kou Y, et al. Pt-decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation[J]. Journal of Materials Chemistry A, 2016, 4(28): 11060-11068. |
92 | Silva J C M, da Silva S G, de Souza R F B, et al. PtAu/C electrocatalysts as anodes for direct ammonia fuel cell[J]. Applied Catalysis A: General, 2015, 490: 133-138. |
93 | Kang Y M, Wang W, Li J M, et al. A highly efficient Pt-NiO/C electrocatalyst for ammonia electro-oxidation[J]. Journal of the Electrochemical Society, 2017, 164(9): F958-F965. |
94 | Xu W, Du D W, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2018, 237: 1101-1109. |
95 | Zhang H M, Wang Y F, Wu Z C, et al. An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production[J]. Energy Procedia, 2017, 142: 1539-1544. |
96 | 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72: 42-52. |
Fu F Y, Xing G E. Progress of polymer-based anion exchange membrane for alkaline fuel cell application[J]. CIESC Journal, 2021, 72: 42-52. | |
97 | Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
98 | Wang T, Zhao Y, Setzler B P, et al. Improving performance and durability of low temperature direct ammonia fuel cells: effect of backpressure and oxygen reduction catalysts[J]. Journal of the Electrochemical Society, 2021, 168(1): 014507. |
99 | Achrai B, Zhao Y, Wang T, et al. A direct ammonia fuel cell with a KOH-free anode feed generating 180 mW·cm-2 at 120℃[J]. Journal of the Electrochemical Society, 2020, 167(13): 134518. |
100 | Lan R, Tao S W. Direct ammonia alkaline anion-exchange membrane fuel cells[J]. Electrochemical and Solid-State Letters, 2010, 13(8): B83. |
101 | Gottesfeld S. The direct ammonia fuel cell and a common pattern of electrocatalytic processes[J]. Journal of the Electrochemical Society, 2018, 165(15): J3405-J3412. |
102 | Lee K R, Song D S, Park S B, et al. A direct ammonium carbonate fuel cell with an anion exchange membrane[J]. RSC Advances, 2014, 4(11): 5638. |
103 | Siddiqui O, Dincer I. Investigation of a new anion exchange membrane-based direct ammonia fuel cell system[J]. Fuel Cells, 2018, 18(4): 379-388. |
104 | Ishiyama S, Rosero-Navarro N C, Miura A, et al. Mg-Al layered double hydroxide as an electrolyte membrane for aqueous ammonia fuel cell[J]. Materials Research Bulletin, 2019, 119: 110561. |
105 | Zou P M, Chen S G, Lan R, et al. Investigation of perovskite oxide SrCo0.8Cu0.1Nb0.1O3- δ as a cathode material for room temperature direct ammonia fuel cells[J]. ChemSusChem, 2019, 12(12): 2788-2794. |
106 | Suzuki S, Muroyama H, Matsui T, et al. Fundamental studies on direct ammonia fuel cell employing anion exchange membrane[J]. Journal of Power Sources, 2012, 208: 257-262. |
107 | Wang T, Zhao Y, Setzler B P, et al. A high-performance 75 W direct ammonia fuel cell stack[J]. Cell Reports Physical Science, 2022, 3(4): 100829. |
21 | Rosca V, Koper M T M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(21): 2513-2524. |
22 | Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(42): 11717-11723. |
23 | Ye J Y, Lin J L, Zhou Z Y, et al. Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in situ FTIR spectroscopy and online electrochemical mass spectroscopy[J]. Journal of Electroanalytical Chemistry, 2018, 819: 495-501. |
24 | Skachkov D, Venkateswara Rao C, Ishikawa Y. Combined first-principles molecular dynamics/density functional theory study of ammonia electrooxidation on Pt(100) electrode[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25451-25466. |
25 | Herron J A, Ferrin P, Mavrikakis M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study[J]. The Journal of Physical Chemistry C, 2015, 119(26): 14692-14701. |
26 | Diaz L A, Botte G G. Mathematical modeling of ammonia electrooxidation kinetics in a polycrystalline Pt rotating disk electrode[J]. Electrochimica Acta, 2015, 179: 519-528. |
27 | de Vooys A C A, Mrozek M F, Koper M T M, et al. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy[J]. Electrochemistry Communications, 2001, 3(6): 293-298. |
28 | Katayama Y, Okanishi T, Muroyama H, et al. Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy[J]. ACS Catalysis, 2016, 6(3): 2026-2034. |
29 | Vidal-Iglesias F J, Solla-Gullón J, Feliu J M, et al. DEMS study of ammonia oxidation on platinum basal planes[J]. Journal of Electroanalytical Chemistry, 2006, 588(2): 331-338. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 592
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||